לדלג לתוכן

הסתברות/התפלגויות וקטוריות

מתוך ויקיספר, אוסף הספרים והמדריכים החופשי

התפלגות ריילי

[עריכה]
ריילי:
פונקצית התפלגות
פונקצית צפיפות
פרמטרים -
תומך
פונקצית התפלגות
פונקצית צפיפות
תוחלת
חציון {{{חציון}}}
שונות
פונקציה יוצרת מומנטים ?
פונקציה אופיינית ?


אם במשולש ישר זווית שני הניצב הם מ"מ גאוסים תקניים אז R הוא היתר.

יהיו מ"מ בלתי תלויים. נחשב את ההתפלגות של :

את פונקציית הצפיפות ניתן לקבל על ידי גזירה.

דוגמה

[עריכה]

(להשלים)

סכום מ"מ כקונבולוציה

[עריכה]

נניח כי נתונים שני מ"מ X1, X2 בלתי תלויים ואנו מעוניינים למצוא את פונקצית הצפיפות של הסכום. נחשב את פונקצית ההתפלגות שלהם (אינטגרל על ):

על מנת לקבל את פונקצית הצפיפות נגזור את הביטוי שהתקבל:

קיבלנו, אם כן, כי הצפיפות היא קונבולוציה של הצפיפויות. לסיכום:


משפט: סכום מ"מ כקונבולוציה

עבור שני מ"מ רציפים בלתי תלויים מתקיים:
ובמקרה הבדיד: .


דוגמה: מ"מ בדיד

[עריכה]

נחשב סכום עבור המשתנים :

לסיכום:



למה "סכום מ"מ פואסוניים"


בדומה,



למה "סכום מ"מ בינומיים"


דוגמה: מ"מ רציף

[עריכה]

נחשב סכום עבור המשתנים :

כפי שניתן לראות, התוצאה היא מעין מיצוע של שתי הצפיפויות המקוריות.

אם לעומת זאת נגדיר: אז נקבל:

זהו פילוג גאמה עם r=2, אשר עליו נלמד בהמשך.

התפלגות גאמה

[עריכה]
גאמה:
פונקצית התפלגות
פונקצית צפיפות
פרמטרים
תומך
פונקצית התפלגות
פונקצית צפיפות
תוחלת
חציון {{{חציון}}}
שונות
פונקציה יוצרת מומנטים
פונקציה אופיינית


סכום של r מ"מ מעריכיים אשר כל אחד מהם בעלי פרמטר λ,
כלומר: .
.

תכונות

[עריכה]
  • קונבולוציה: .

דוגמה

[עריכה]

התפלגות מולטינומית

[עריכה]

דוגמה

[עריכה]


- התפלגויות וקטוריות -