לדלג לתוכן

הסתברות/משתנים מקריים

מתוך ויקיספר, אוסף הספרים והמדריכים החופשי

בחלק המבוא ראינו כי לניסוי יש תוצאות. ממרחב המדגם של התוצאות, , מרכיבים מאורעות, ולמאורעות מרכיבים פונקציית הסתברות.

חלק זה דן במשתנים מקריים. אינטואיטיבית, משתנה מקרי הוא פונקציה המתאימה לכל תוצאת ניסוי ערך מספרי, לדוגמה, התאמת הערך 0 לתוצאת "עץ" בהטלת מטבע, ו-1 לתוצאת "פאלי", או התאמת 0 לכל התוצאות הזוגיות של הטלת קוביה, ו-1 לכל התוצאות האי זוגיות. הדבר יאפשר לנו לענות על שאלות כגון:

  1. מה הסיכוי שהתוצאה שהתקבלה הותאמה לערך בין ל- כלשהם?
  2. מה הערך הממוצע שנצפה לקבל מההתאמות שינבעו ממספר רב של תוצאות?

הגדרות

[עריכה]

הגדרה: משתנה מקרי

משתנה מקרי הוא התאמה של כל תוצאה אפשרית ממרחב המדגם לתוצאה מספרית. .

לרוב נציין משתנה מקרי באות גדולה, לדוגמה , וערך ספיציפי של משתנה מקרי באות קטנה, לדוגמה .

ההגדרה המדוייקת שונה מעט, בצורה שלא תשנה ממש בספר זה. משתנה מקרי הוא פונקציה מדידה ממרחב הסתברות למרחב מדיד כלשהו, בדרך כלל המספרים הממשיים עם ה-σ-אלגברה של בורל. במקרה כזה המשתנה המקרי נקרא משתנה מקרי ממשי. הדרישה שהפונקציה מדידה מבטיחה שאפשר יהיה לחשב את ההסתברות למאורעות , כלומר . כאשר מרחב ההסתברות הוא בדיד, כל הפונקציות ממנו מדידות, ולכן כל פונקציה יכולה להחשב משתנה מקרי.

התומך הוא התחום שבו משתנה מקרי יכול לקבל ערכים.

הגדרה: תומך

יהי מ"מ. נאמר ש- נתמך בקטע אם . התומך של הוא הקטע הסגור הקטן ביותר בו נתמך.

דוגמאות

[עריכה]

תוצאת קוביה

[עריכה]

בזריקת קוביה, קבוצת המדגם היא .


נוכל להגדיר את משתנה מקרי על ידי זאת ש- שווה לתוצאת הקוביה. במקרה זה, אם הקוביה הוגנת, נוכל לכתוב:

  1. (מפני שמדובר ב-2 מאורעות במרחב סימטרי בעל 6 איברים)

לחלופין, נוכל להגדיר משתנה מקרי על ידי זאת ש- שווה ל-0 אם התוצאה זוגית, ו-1 אם התוצאה אי-זוגית. במקרה זה, אם הקוביה הוגנת, נוכל לכתוב:

  1. (המשתנה אינו מקבל ערך זה)
  2. (המשתנה מקבל רק את הערכים 0 ו-1, ולכן כל תוצאה תצא פחות מ3)
  3. (מפני שמדובר ב-3 מאורעות במרחב סימטרי בעל 6 איברים)

תוצאות הטלות מטבעות

[עריכה]

נניח שזורקים מטבע פעמים. נשים לב שכאן כל תוצאה ב- היא רצף של תוצאות "עץ" ו"פאלי". נוכל להגדיר משתנה מקרי המתאר את מספר תוצאות "עץ" מתוך ההטלות. בהמשך נראה כי אם סיכוי ה"עץ" בהטלה בודדת הוא , וסיכוי ה"פאלי" הוא , אז

.

בחירת מספר בקטע

[עריכה]

נניח שבוחרים מספר באופן מקרי בין ל-. קבוצת המדגם היא


.


נוכל להגדיר את משתנה מקרי על ידי זאת ש- שווה למספר שנבחר במקרה זה נוכל לכתוב:

  1. (משיקולי סימטריה)
  2. (הסיכוי שייבחר בדיוק מספר כלשהו, לדוגמה 0, הוא 0)

לחלופין, נוכל להגדיר משתנה מקרי על ידי זאת ש- שווה לערכו המוחלט של המספר שנבחר. במקרה זה נוכל לכתוב:

  1. (המשתנה אינו מקבל ערך זה)

קישורים חיצוניים

[עריכה]


הפרק הקודם:
דוגמה מסכמת - ניסויי ברנולי
משתנים מקריים הפרק הבא:
משתנים מקריים בדידים