אלגברה לינארית/מציאת מטריצה דומה

מתוך ויקיספר, אוסף הספרים והמדריכים החופשי
קפיצה לניווט קפיצה לחיפוש
Icono copyedit2.png יש לשכתב דף זה
ייתכנו לכך מספר סיבות: ייתכן שהמידע המצוי בדף זה מכיל טעויות, או שהניסוח וצורת הכתיבה שלו אינם מתאימים לוויקיספר. אתם מוזמנים לסייע ולתקן את הבעיות בדף זה, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. אם אתם סבורים כי אין בדף בעיה, ניתן לציין זאת בדף השיחה שלו.



מציאת מטריצה דומה בצורה מיוחדת[עריכה]

ליכסון[עריכה]

מטריצה A תיקרא "לכסינה" אם קיימת D אלכסונית שדומה לה.
משפט: A לכסינה אם ורק אם קיים בסיס של המורכב כולו מוקטורים עצמיים של A.

מתוך ההוכחה נסיק: המטריצה המלכסנת P היא המטריצה בה עמודותיה הן וקטורים עצמיים של A שביחד מהווים בסיס למרחב. כמו כן, על המטריצה האלכסונית שדומה ל-A מופיעים באלכסון הערכים העצמיים של A, וסדר העמודות של המטריצה P (מהמובן של הדרכים לסדר אותם) יקבע את הסדר של הערכים העצמיים על האלכסון.

כמו כן אפשר להבין שאם למטריצה A יש n ע"ע שונים אזי היא לכסינה, פשוט כי אם נתבונן בקבוצה של n וקטורים עצמיים שכל אחד מהם קשור לערך עצמי אחר, היא בת"ל ולפי משפט השלישי חינם, היא בסיס. לכן קיים בסיס של המרחב שמורכב כולו מוקטורים עצמיים של A ולכן לכסינה.

משפט: A לכסינה אם ורק אם לכל ערך עצמי יתקיים (הריבוי האלגברי והגאומטרי שווים)

חשיבות הליכסון[עריכה]

אחד השימושים הטובים של ליכסון זה חישוב חזקות גבוהות של מטריצה. נראה כי מתקיים שאם (כאשר D אלכסונית) אז מתקיים ש- והרי חזקה גבוהה של מטריצה אלכסונית קל לחשב כיון שזה פשוט העלאה בחזקה המתאימה כל אבר על האלכסון.

שילוש[עריכה]

ז'רדון[עריכה]