לדלג לתוכן
תפריט ראשי
תפריט ראשי
העברה לסרגל הצד
הסתרה
ניווט
עמוד ראשי
ברוכים הבאים
שינויים אחרונים
דף אקראי
קהילה
שער הקהילה
עזרה
מזנון
דלפק ייעוץ
חיפוש
חיפוש
מראה
תרומה לוויקיספר
יצירת חשבון
כניסה לחשבון
כלים אישיים
תרומה לוויקיספר
יצירת חשבון
כניסה לחשבון
דפים לעורכים שלא נכנסו לחשבון
מידע נוסף
תרומות
שיחה
תוכן עניינים
העברה לסרגל הצד
הסתרה
התחלה
1
משוואות לינאריות רמה ג
2
תשובות
מצב תוכן העניינים
מתמטיקה תיכונית/אלגברה תיכונית/משוואות/משוואות בשני נעלמים או יותר/תרגילים/משוואות לינאריות רמה ג
הוספת שפות
הוספת קישורים
דף
שיחה
עברית
קריאה
עריכה
גרסאות קודמות
כלים
כלים
העברה לסרגל הצד
הסתרה
פעולות
קריאה
עריכה
גרסאות קודמות
כללי
דפים המקושרים לכאן
שינויים בדפים המקושרים
דפים מיוחדים
קישור קבוע
מידע על הדף
ציטוט הדף הזה
קבלת כתובת מקוצרת
הורדת קוד QR
הדפסה/יצוא
יצירת ספר
הורדה כ־PDF
גרסה להדפסה
במיזמים אחרים
מראה
העברה לסרגל הצד
הסתרה
מתוך ויקיספר, אוסף הספרים והמדריכים החופשי
<
מתמטיקה תיכונית
|
אלגברה תיכונית
|
משוואות
|
משוואות בשני נעלמים או יותר
|
תרגילים
משוואות לינאריות רמה ג
[
עריכה
]
{
3
y
=
0
−
w
+
x
−
3
y
−
2
z
=
−
9
−
3
w
+
3
x
+
2
y
=
−
15
−
3
w
−
x
−
3
y
+
3
z
=
3
{\displaystyle {\begin{cases}3y&=0\\-w+x-3y-2z&=-9\\-3w+3x+2y&=-15\\-3w-x-3y+3z&=3\end{cases}}}
{
2
(
x
+
y
+
z
)
−
3
w
=
−
6
2
z
−
w
=
−
2
3
(
x
+
y
−
z
)
=
0
−
w
−
3
x
−
2
y
+
3
z
=
−
4
{\displaystyle {\begin{cases}2(x+y+z)-3w&=-6\\2z-w&=-2\\3(x+y-z)&=0\\-w-3x-2y+3z&=-4\end{cases}}}
{
−
3
w
+
2
x
−
2
y
+
z
=
11
3
w
−
x
+
y
+
3
z
=
−
5
3
w
−
3
x
+
2
y
−
2
z
=
−
11
−
3
w
−
x
+
3
y
−
2
z
=
−
4
{\displaystyle {\begin{cases}-3w+2x-2y+z&=11\\3w-x+y+3z&=-5\\3w-3x+2y-2z&=-11\\-3w-x+3y-2z&=-4\end{cases}}}
{
−
w
+
2
x
+
3
y
=
−
11
w
+
x
+
2
y
+
z
=
−
5
−
3
w
−
3
x
+
z
=
−
7
2
w
+
2
x
−
y
−
3
z
=
10
{\displaystyle {\begin{cases}-w+2x+3y&=-11\\w+x+2y+z&=-5\\-3w-3x+z&=-7\\2w+2x-y-3z&=10\end{cases}}}
{
2
x
−
3
(
y
+
z
)
=
15
w
−
3
y
=
8
−
2
x
+
3
y
−
z
=
−
7
−
2
w
−
2
x
−
3
z
=
8
{\displaystyle {\begin{cases}2x-3(y+z)&=15\\w-3y&=8\\-2x+3y-z&=-7\\-2w-2x-3z&=8\end{cases}}}
{
−
3
w
+
3
x
+
2
y
+
z
=
−
1
w
+
2
x
−
3
y
−
z
=
−
8
w
−
3
x
−
2
z
=
−
1
−
w
+
x
−
2
y
+
3
z
=
−
3
{\displaystyle {\begin{cases}-3w+3x+2y+z&=-1\\w+2x-3y-z&=-8\\w-3x-2z&=-1\\-w+x-2y+3z&=-3\end{cases}}}
{
−
2
w
+
x
−
2
(
y
+
z
)
=
7
2
x
−
2
y
+
3
z
=
21
−
3
x
+
2
y
−
3
z
=
−
24
3
w
+
3
x
−
y
+
3
z
=
15
{\displaystyle {\begin{cases}-2w+x-2(y+z)&=7\\2x-2y+3z&=21\\-3x+2y-3z&=-24\\3w+3x-y+3z&=15\end{cases}}}
{
−
w
−
x
+
y
−
z
=
−
6
z
−
3
y
=
6
3
(
y
+
z
)
−
x
=
−
9
−
2
w
−
x
+
3
y
=
−
11
{\displaystyle {\begin{cases}-w-x+y-z&=-6\\z-3y&=6\\3(y+z)-x&=-9\\-2w-x+3y&=-11\end{cases}}}
{
2
w
+
2
x
+
3
y
−
3
z
=
10
−
3
w
−
3
x
+
y
−
2
z
=
−
18
w
−
x
+
3
y
−
z
=
5
3
y
−
2
w
=
5
{\displaystyle {\begin{cases}2w+2x+3y-3z&=10\\-3w-3x+y-2z&=-18\\w-x+3y-z&=5\\3y-2w&=5\end{cases}}}
{
2
(
−
x
+
y
+
z
)
−
3
w
=
8
w
+
2
y
+
z
=
1
−
3
x
−
2
y
−
z
=
8
w
−
x
−
3
y
+
3
z
=
6
{\displaystyle {\begin{cases}2(-x+y+z)-3w&=8\\w+2y+z&=1\\-3x-2y-z&=8\\w-x-3y+3z&=6\end{cases}}}
{
−
3
w
−
2
x
+
y
−
2
z
=
1
2
w
−
3
x
−
2
z
=
−
12
3
(
−
x
+
y
+
z
)
−
w
=
6
w
−
y
−
2
z
=
−
7
{\displaystyle {\begin{cases}-3w-2x+y-2z&=1\\2w-3x-2z&=-12\\3(-x+y+z)-w&=6\\w-y-2z&=-7\end{cases}}}
{
−
2
w
−
3
x
+
3
y
+
z
=
−
14
2
w
−
x
−
3
(
y
+
z
)
=
12
3
w
+
x
+
3
(
y
+
z
)
=
−
7
−
2
w
−
x
−
y
+
2
z
=
−
9
{\displaystyle {\begin{cases}-2w-3x+3y+z&=-14\\2w-x-3(y+z)&=12\\3w+x+3(y+z)&=-7\\-2w-x-y+2z&=-9\end{cases}}}
{
3
(
w
−
z
)
=
18
2
w
+
x
−
y
−
3
z
=
14
−
w
+
2
x
−
y
−
3
z
=
2
−
2
w
−
y
+
z
=
−
7
{\displaystyle {\begin{cases}3(w-z)&=18\\2w+x-y-3z&=14\\-w+2x-y-3z&=2\\-2w-y+z&=-7\end{cases}}}
{
3
w
−
2
x
+
3
y
+
2
z
=
−
9
−
2
w
−
3
x
+
y
+
3
z
=
−
11
w
+
2
x
−
y
−
3
z
=
10
2
w
−
x
−
y
−
3
z
=
−
1
{\displaystyle {\begin{cases}3w-2x+3y+2z&=-9\\-2w-3x+y+3z&=-11\\w+2x-y-3z&=10\\2w-x-y-3z&=-1\end{cases}}}
{
2
(
x
+
y
−
z
)
−
w
=
6
w
−
x
−
2
y
+
3
z
=
−
5
2
w
+
3
(
x
+
y
)
=
5
3
w
+
x
+
3
y
=
3
{\displaystyle {\begin{cases}2(x+y-z)-w&=6\\w-x-2y+3z&=-5\\2w+3(x+y)&=5\\3w+x+3y&=3\end{cases}}}
{
2
w
+
3
x
−
2
y
+
2
z
=
−
18
2
w
−
x
+
2
(
y
+
z
)
=
2
3
w
+
x
+
2
(
y
+
z
)
=
−
5
2
x
+
y
+
3
z
=
−
1
{\displaystyle {\begin{cases}2w+3x-2y+2z&=-18\\2w-x+2(y+z)&=2\\3w+x+2(y+z)&=-5\\2x+y+3z&=-1\end{cases}}}
{
−
w
−
x
−
3
y
−
2
z
=
−
2
−
3
w
−
y
+
z
=
−
7
3
w
−
2
x
−
y
−
3
z
=
5
−
2
w
−
3
x
+
3
y
=
−
10
{\displaystyle {\begin{cases}-w-x-3y-2z&=-2\\-3w-y+z&=-7\\3w-2x-y-3z&=5\\-2w-3x+3y&=-10\end{cases}}}
{
−
2
(
w
+
x
+
y
)
=
−
4
−
3
w
−
3
x
−
y
−
z
=
−
7
w
−
3
x
+
y
−
2
z
=
−
4
2
w
−
2
x
+
3
z
=
−
13
{\displaystyle {\begin{cases}-2(w+x+y)&=-4\\-3w-3x-y-z&=-7\\w-3x+y-2z&=-4\\2w-2x+3z&=-13\end{cases}}}
{
3
w
−
x
−
3
z
=
20
2
x
+
y
=
−
2
2
w
−
x
+
y
+
3
z
=
1
w
+
2
x
+
z
=
−
4
{\displaystyle {\begin{cases}3w-x-3z&=20\\2x+y&=-2\\2w-x+y+3z&=1\\w+2x+z&=-4\end{cases}}}
{
−
3
w
+
2
x
−
2
z
=
−
5
w
−
3
(
y
+
z
)
=
2
−
2
w
+
2
x
+
y
+
z
=
−
5
−
2
x
+
3
y
+
z
=
1
{\displaystyle {\begin{cases}-3w+2x-2z&=-5\\w-3(y+z)&=2\\-2w+2x+y+z&=-5\\-2x+3y+z&=1\end{cases}}}
{
−
3
x
−
y
+
3
z
=
12
2
z
−
4
w
=
4
4
w
+
3
x
−
y
+
3
z
=
−
16
−
4
w
−
2
x
−
y
+
z
=
12
{\displaystyle {\begin{cases}-3x-y+3z&=12\\2z-4w&=4\\4w+3x-y+3z&=-16\\-4w-2x-y+z&=12\end{cases}}}
{
3
x
−
3
y
+
4
z
=
−
3
−
4
x
−
3
y
−
2
z
=
−
6
−
2
x
−
4
y
+
3
z
=
−
15
3
w
−
2
x
−
3
y
+
4
z
=
−
30
{\displaystyle {\begin{cases}3x-3y+4z&=-3\\-4x-3y-2z&=-6\\-2x-4y+3z&=-15\\3w-2x-3y+4z&=-30\end{cases}}}
{
−
4
w
−
2
x
+
3
y
+
4
z
=
22
−
3
w
−
2
x
−
3
(
y
+
z
)
=
15
4
w
−
2
y
−
z
=
−
8
4
w
−
2
x
+
y
−
4
z
=
−
26
{\displaystyle {\begin{cases}-4w-2x+3y+4z&=22\\-3w-2x-3(y+z)&=15\\4w-2y-z&=-8\\4w-2x+y-4z&=-26\end{cases}}}
{
−
4
w
−
2
x
+
4
y
+
3
z
=
−
20
−
4
(
w
+
x
+
y
)
=
−
16
2
(
2
x
+
y
+
2
z
)
=
16
3
w
−
3
x
−
2
y
+
2
z
=
8
{\displaystyle {\begin{cases}-4w-2x+4y+3z&=-20\\-4(w+x+y)&=-16\\2(2x+y+2z)&=16\\3w-3x-2y+2z&=8\end{cases}}}
{
2
(
x
−
2
y
)
=
10
−
4
w
−
2
x
+
3
(
y
+
z
)
=
9
2
w
−
4
x
+
y
−
3
z
=
−
19
y
−
4
w
=
6
{\displaystyle {\begin{cases}2(x-2y)&=10\\-4w-2x+3(y+z)&=9\\2w-4x+y-3z&=-19\\y-4w&=6\end{cases}}}
{
3
x
−
4
y
+
2
z
=
30
2
z
−
y
=
12
2
(
w
−
2
x
+
z
)
=
2
−
2
w
−
x
−
4
y
+
z
=
16
{\displaystyle {\begin{cases}3x-4y+2z&=30\\2z-y&=12\\2(w-2x+z)&=2\\-2w-x-4y+z&=16\end{cases}}}
{
w
−
2
x
−
y
+
2
z
=
1
3
w
−
4
(
y
+
z
)
=
−
16
2
(
w
−
2
x
+
z
)
=
−
2
3
(
x
+
y
)
−
w
=
9
{\displaystyle {\begin{cases}w-2x-y+2z&=1\\3w-4(y+z)&=-16\\2(w-2x+z)&=-2\\3(x+y)-w&=9\end{cases}}}
{
w
−
3
x
−
2
y
+
2
z
=
−
1
2
(
2
w
+
x
−
y
+
z
)
=
0
−
4
w
−
3
x
−
4
y
−
z
=
−
12
3
w
−
4
x
+
3
y
=
16
{\displaystyle {\begin{cases}w-3x-2y+2z&=-1\\2(2w+x-y+z)&=0\\-4w-3x-4y-z&=-12\\3w-4x+3y&=16\end{cases}}}
{
4
w
+
3
y
=
20
w
+
2
x
+
3
z
=
4
4
w
−
2
x
+
y
−
2
z
=
8
−
3
w
−
2
y
−
z
=
−
12
{\displaystyle {\begin{cases}4w+3y&=20\\w+2x+3z&=4\\4w-2x+y-2z&=8\\-3w-2y-z&=-12\end{cases}}}
{
4
w
+
4
x
−
4
y
−
z
=
10
2
w
+
x
+
3
z
=
12
−
3
x
+
3
y
+
4
z
=
8
3
w
−
3
x
−
2
y
=
9
{\displaystyle {\begin{cases}4w+4x-4y-z&=10\\2w+x+3z&=12\\-3x+3y+4z&=8\\3w-3x-2y&=9\end{cases}}}
{
3
w
+
4
x
−
3
y
=
1
4
w
+
3
x
+
3
y
+
4
z
=
−
11
4
w
−
3
y
+
4
z
=
−
2
2
w
−
x
−
y
−
3
z
=
−
8
{\displaystyle {\begin{cases}3w+4x-3y&=1\\4w+3x+3y+4z&=-11\\4w-3y+4z&=-2\\2w-x-y-3z&=-8\end{cases}}}
{
−
3
w
−
3
x
−
2
y
+
3
z
=
2
3
y
−
2
z
=
−
4
w
−
3
x
+
y
+
3
z
=
−
22
−
2
(
w
+
y
+
2
z
)
=
30
{\displaystyle {\begin{cases}-3w-3x-2y+3z&=2\\3y-2z&=-4\\w-3x+y+3z&=-22\\-2(w+y+2z)&=30\end{cases}}}
{
−
w
−
4
x
+
2
y
+
z
=
−
8
−
4
w
+
2
x
−
y
−
3
z
=
−
10
−
3
w
+
3
x
−
y
−
2
z
=
−
6
3
w
+
2
z
=
10
{\displaystyle {\begin{cases}-w-4x+2y+z&=-8\\-4w+2x-y-3z&=-10\\-3w+3x-y-2z&=-6\\3w+2z&=10\end{cases}}}
{
4
(
w
+
x
+
z
)
=
−
12
4
w
−
2
x
+
4
y
−
3
z
=
1
4
w
−
2
x
+
2
y
−
z
=
−
1
2
w
+
3
x
+
3
y
+
z
=
−
9
{\displaystyle {\begin{cases}4(w+x+z)&=-12\\4w-2x+4y-3z&=1\\4w-2x+2y-z&=-1\\2w+3x+3y+z&=-9\end{cases}}}
{
3
w
+
4
x
+
4
y
−
2
z
=
−
13
−
3
w
−
3
x
−
y
+
z
=
6
−
2
w
+
2
x
+
2
y
−
z
=
4
−
2
w
−
4
x
−
y
+
2
z
=
1
{\displaystyle {\begin{cases}3w+4x+4y-2z&=-13\\-3w-3x-y+z&=6\\-2w+2x+2y-z&=4\\-2w-4x-y+2z&=1\end{cases}}}
{
−
2
(
2
w
+
2
x
+
z
)
=
−
10
−
3
w
+
3
x
+
3
y
+
2
z
=
3
−
x
−
4
(
y
+
z
)
=
−
26
−
2
w
+
3
x
+
4
y
+
z
=
7
{\displaystyle {\begin{cases}-2(2w+2x+z)&=-10\\-3w+3x+3y+2z&=3\\-x-4(y+z)&=-26\\-2w+3x+4y+z&=7\end{cases}}}
{
w
+
3
x
−
4
y
+
2
z
=
−
28
3
w
−
x
+
y
−
4
z
=
5
3
w
+
x
−
3
y
+
2
z
=
−
25
−
x
−
y
+
4
z
=
−
8
{\displaystyle {\begin{cases}w+3x-4y+2z&=-28\\3w-x+y-4z&=5\\3w+x-3y+2z&=-25\\-x-y+4z&=-8\end{cases}}}
{
w
+
3
x
−
3
y
+
4
z
=
−
6
x
−
4
y
+
z
=
−
5
w
−
3
x
−
4
(
y
+
z
)
=
−
1
−
3
w
−
x
−
y
−
4
z
=
0
{\displaystyle {\begin{cases}w+3x-3y+4z&=-6\\x-4y+z&=-5\\w-3x-4(y+z)&=-1\\-3w-x-y-4z&=0\end{cases}}}
{
−
4
x
+
4
y
+
z
=
13
3
x
−
4
y
−
3
z
=
−
16
−
4
x
+
y
−
2
z
=
−
2
3
w
+
3
x
−
4
z
=
8
{\displaystyle {\begin{cases}-4x+4y+z&=13\\3x-4y-3z&=-16\\-4x+y-2z&=-2\\3w+3x-4z&=8\end{cases}}}
{
4
(
w
−
x
−
y
)
=
−
20
−
3
w
−
2
x
−
y
−
4
z
=
−
20
−
2
w
−
3
x
+
4
y
−
z
=
−
1
−
2
w
−
3
x
−
3
y
+
2
z
=
−
16
{\displaystyle {\begin{cases}4(w-x-y)&=-20\\-3w-2x-y-4z&=-20\\-2w-3x+4y-z&=-1\\-2w-3x-3y+2z&=-16\end{cases}}}
{
−
4
w
+
4
x
+
3
(
y
+
z
)
=
17
4
w
+
3
x
+
4
y
−
4
z
=
−
19
−
2
w
−
4
x
−
y
+
3
z
=
15
−
3
x
+
2
y
+
3
z
=
11
{\displaystyle {\begin{cases}-4w+4x+3(y+z)&=17\\4w+3x+4y-4z&=-19\\-2w-4x-y+3z&=15\\-3x+2y+3z&=11\end{cases}}}
{
−
4
w
−
3
x
+
4
y
−
3
z
=
−
4
−
4
w
−
x
−
4
y
=
−
14
−
3
w
−
x
+
4
y
−
2
z
=
0
3
w
+
2
x
+
y
+
2
z
=
7
{\displaystyle {\begin{cases}-4w-3x+4y-3z&=-4\\-4w-x-4y&=-14\\-3w-x+4y-2z&=0\\3w+2x+y+2z&=7\end{cases}}}
{
−
w
−
2
x
−
y
−
3
z
=
17
4
x
+
2
y
+
3
z
=
−
17
3
w
+
4
y
−
3
z
=
−
19
2
z
−
x
=
−
6
{\displaystyle {\begin{cases}-w-2x-y-3z&=17\\4x+2y+3z&=-17\\3w+4y-3z&=-19\\2z-x&=-6\end{cases}}}
{
−
3
w
+
4
x
+
2
y
−
4
z
=
−
8
−
4
w
+
2
x
+
y
+
4
z
=
24
−
4
w
+
x
−
3
y
−
z
=
−
3
3
w
−
4
x
−
y
+
2
z
=
6
{\displaystyle {\begin{cases}-3w+4x+2y-4z&=-8\\-4w+2x+y+4z&=24\\-4w+x-3y-z&=-3\\3w-4x-y+2z&=6\end{cases}}}
{
−
4
w
+
x
−
4
y
+
4
z
=
−
27
4
w
+
4
x
+
3
y
−
3
z
=
29
−
4
w
+
4
x
+
2
y
−
3
z
=
−
4
−
3
w
+
3
x
+
3
y
−
2
z
=
−
2
{\displaystyle {\begin{cases}-4w+x-4y+4z&=-27\\4w+4x+3y-3z&=29\\-4w+4x+2y-3z&=-4\\-3w+3x+3y-2z&=-2\end{cases}}}
{
3
w
−
2
x
−
3
y
−
4
z
=
2
−
2
w
−
4
x
+
y
−
4
z
=
2
−
2
(
2
w
−
2
x
+
2
y
+
z
)
=
−
14
3
(
y
−
z
)
=
−
15
{\displaystyle {\begin{cases}3w-2x-3y-4z&=2\\-2w-4x+y-4z&=2\\-2(2w-2x+2y+z)&=-14\\3(y-z)&=-15\end{cases}}}
{
−
3
w
+
3
x
−
2
y
−
3
z
=
−
9
3
w
+
3
y
+
4
z
=
19
4
w
−
x
+
3
y
+
4
z
=
20
2
w
+
y
−
z
=
1
{\displaystyle {\begin{cases}-3w+3x-2y-3z&=-9\\3w+3y+4z&=19\\4w-x+3y+4z&=20\\2w+y-z&=1\end{cases}}}
{
−
3
w
−
x
+
4
y
−
z
=
−
1
−
w
+
2
y
+
4
z
=
−
16
w
−
x
−
y
+
z
=
−
3
w
−
4
x
−
2
y
−
z
=
0
{\displaystyle {\begin{cases}-3w-x+4y-z&=-1\\-w+2y+4z&=-16\\w-x-y+z&=-3\\w-4x-2y-z&=0\end{cases}}}
{
2
w
−
4
x
+
4
y
−
z
=
−
5
2
w
−
3
x
+
4
z
=
−
6
2
x
+
4
y
−
3
z
=
−
11
−
2
w
−
x
−
3
y
+
z
=
11
{\displaystyle {\begin{cases}2w-4x+4y-z&=-5\\2w-3x+4z&=-6\\2x+4y-3z&=-11\\-2w-x-3y+z&=11\end{cases}}}
{
3
x
−
2
w
=
1
−
4
y
=
−
16
−
4
w
−
3
x
−
3
y
+
4
z
=
−
17
2
z
−
4
y
=
−
24
{\displaystyle {\begin{cases}3x-2w&=1\\-4y&=-16\\-4w-3x-3y+4z&=-17\\2z-4y&=-24\end{cases}}}
{
1
6
(
−
2
x
+
9
y
−
6
z
)
=
4
15
−
3
4
w
−
x
−
3
(
y
+
z
)
=
5
4
−
w
+
4
3
x
−
2
z
=
−
7
15
1
4
(
−
5
w
−
8
x
−
2
y
)
=
47
20
{\displaystyle {\begin{cases}{\frac {1}{6}}(-2x+9y-6z)&={\frac {4}{15}}\\-{\frac {3}{4}}w-x-3(y+z)&={\frac {5}{4}}\\-w+{\frac {4}{3}}x-2z&=-{\frac {7}{15}}\\{\frac {1}{4}}(-5w-8x-2y)&={\frac {47}{20}}\end{cases}}}
{
−
4
5
x
+
y
+
3
4
z
=
133
60
5
w
+
5
4
x
−
2
5
z
=
211
30
1
20
(
−
5
w
+
60
x
+
4
y
−
4
z
)
=
67
20
1
4
(
−
w
−
10
x
+
10
y
−
3
z
)
=
77
6
{\displaystyle {\begin{cases}-{\frac {4}{5}}x+y+{\frac {3}{4}}z&={\frac {133}{60}}\\5w+{\frac {5}{4}}x-{\frac {2}{5}}z&={\frac {211}{30}}\\{\frac {1}{20}}(-5w+60x+4y-4z)&={\frac {67}{20}}\\{\frac {1}{4}}(-w-10x+10y-3z)&={\frac {77}{6}}\end{cases}}}
{
1
6
(
−
15
w
−
15
x
+
4
y
−
12
z
)
=
−
37
12
5
2
w
−
4
3
y
=
37
6
w
−
3
5
x
−
y
−
2
5
z
=
29
10
3
w
−
3
2
x
+
1
3
y
−
2
z
=
139
12
{\displaystyle {\begin{cases}{\frac {1}{6}}(-15w-15x+4y-12z)&=-{\frac {37}{12}}\\{\frac {5}{2}}w-{\frac {4}{3}}y&={\frac {37}{6}}\\w-{\frac {3}{5}}x-y-{\frac {2}{5}}z&={\frac {29}{10}}\\3w-{\frac {3}{2}}x+{\frac {1}{3}}y-2z&={\frac {139}{12}}\end{cases}}}
{
1
4
(
−
6
w
−
2
x
−
3
y
+
10
z
)
=
3
16
−
2
5
w
−
2
x
+
3
4
y
=
709
240
−
5
3
w
+
x
−
3
2
y
+
1
2
z
=
−
55
72
3
4
w
+
4
5
x
−
1
2
y
=
−
13
8
{\displaystyle {\begin{cases}{\frac {1}{4}}(-6w-2x-3y+10z)&={\frac {3}{16}}\\-{\frac {2}{5}}w-2x+{\frac {3}{4}}y&={\frac {709}{240}}\\-{\frac {5}{3}}w+x-{\frac {3}{2}}y+{\frac {1}{2}}z&=-{\frac {55}{72}}\\{\frac {3}{4}}w+{\frac {4}{5}}x-{\frac {1}{2}}y&=-{\frac {13}{8}}\end{cases}}}
{
1
5
w
−
5
4
x
+
2
y
+
3
4
z
=
179
20
w
=
3
4
3
w
+
2
5
x
+
1
3
y
−
3
4
z
=
361
75
−
w
+
2
x
−
1
5
y
−
3
4
z
=
−
4
{\displaystyle {\begin{cases}{\frac {1}{5}}w-{\frac {5}{4}}x+2y+{\frac {3}{4}}z&={\frac {179}{20}}\\w&=3\\{\frac {4}{3}}w+{\frac {2}{5}}x+{\frac {1}{3}}y-{\frac {3}{4}}z&={\frac {361}{75}}\\-w+2x-{\frac {1}{5}}y-{\frac {3}{4}}z&=-4\end{cases}}}
{
x
−
y
−
4
3
z
=
25
12
1
12
(
−
16
w
+
16
x
−
6
y
−
9
z
)
=
−
19
24
−
5
4
w
−
5
2
x
+
y
=
35
16
−
2
5
w
+
5
x
−
y
−
4
z
=
69
20
{\displaystyle {\begin{cases}x-y-{\frac {4}{3}}z&={\frac {25}{12}}\\{\frac {1}{12}}(-16w+16x-6y-9z)&=-{\frac {19}{24}}\\-{\frac {5}{4}}w-{\frac {5}{2}}x+y&={\frac {35}{16}}\\-{\frac {2}{5}}w+5x-y-4z&={\frac {69}{20}}\end{cases}}}
{
4
5
w
+
1
3
(
4
x
−
12
y
+
z
)
=
−
901
60
−
5
4
w
+
x
−
4
5
y
+
z
=
7
10
−
4
5
w
+
3
5
x
+
y
=
129
25
−
1
4
w
+
3
x
−
4
5
y
−
z
=
−
13
5
{\displaystyle {\begin{cases}{\frac {4}{5}}w+{\frac {1}{3}}(4x-12y+z)&=-{\frac {901}{60}}\\-{\frac {5}{4}}w+x-{\frac {4}{5}}y+z&={\frac {7}{10}}\\-{\frac {4}{5}}w+{\frac {3}{5}}x+y&={\frac {129}{25}}\\-{\frac {1}{4}}w+3x-{\frac {4}{5}}y-z&=-{\frac {13}{5}}\end{cases}}}
{
1
15
(
20
w
+
5
x
−
6
z
)
=
−
13
5
−
w
−
4
5
x
+
1
5
y
+
1
3
z
=
154
75
4
w
−
1
5
x
+
y
−
3
2
z
=
−
767
100
w
−
2
5
x
−
y
=
−
67
50
{\displaystyle {\begin{cases}{\frac {1}{15}}(20w+5x-6z)&=-{\frac {13}{5}}\\-w-{\frac {4}{5}}x+{\frac {1}{5}}y+{\frac {1}{3}}z&={\frac {154}{75}}\\4w-{\frac {1}{5}}x+y-{\frac {3}{2}}z&=-{\frac {767}{100}}\\w-{\frac {2}{5}}x-y&=-{\frac {67}{50}}\end{cases}}}
{
5
3
w
−
2
x
−
5
4
y
+
5
z
=
−
5
2
−
1
2
w
+
3
4
x
+
y
−
z
=
13
80
−
2
5
w
+
1
2
x
+
2
y
+
5
4
z
=
−
277
200
2
w
−
2
3
x
−
y
+
2
z
=
−
59
30
{\displaystyle {\begin{cases}{\frac {5}{3}}w-2x-{\frac {5}{4}}y+5z&=-{\frac {5}{2}}\\-{\frac {1}{2}}w+{\frac {3}{4}}x+y-z&={\frac {13}{80}}\\-{\frac {2}{5}}w+{\frac {1}{2}}x+2y+{\frac {5}{4}}z&=-{\frac {277}{200}}\\2w-{\frac {2}{3}}x-y+2z&=-{\frac {59}{30}}\end{cases}}}
{
1
3
(
−
12
w
−
3
x
−
5
y
−
4
z
)
=
−
178
15
−
2
3
w
+
4
x
+
4
y
−
z
=
1042
45
2
3
w
+
x
+
2
3
y
−
3
4
z
=
433
90
−
4
3
w
+
4
x
+
3
5
y
=
428
45
{\displaystyle {\begin{cases}{\frac {1}{3}}(-12w-3x-5y-4z)&=-{\frac {178}{15}}\\-{\frac {2}{3}}w+4x+4y-z&={\frac {1042}{45}}\\{\frac {2}{3}}w+x+{\frac {2}{3}}y-{\frac {3}{4}}z&={\frac {433}{90}}\\-{\frac {4}{3}}w+4x+{\frac {3}{5}}y&={\frac {428}{45}}\end{cases}}}
{
−
4
15
(
3
w
−
5
x
+
5
y
)
=
−
154
45
w
+
2
x
−
4
5
y
−
2
3
z
=
13
30
1
6
(
4
w
−
3
x
−
6
y
+
3
z
)
=
−
16
15
−
2
5
w
+
x
+
y
−
z
=
23
15
{\displaystyle {\begin{cases}-{\frac {4}{15}}(3w-5x+5y)&=-{\frac {154}{45}}\\w+2x-{\frac {4}{5}}y-{\frac {2}{3}}z&={\frac {13}{30}}\\{\frac {1}{6}}(4w-3x-6y+3z)&=-{\frac {16}{15}}\\-{\frac {2}{5}}w+x+y-z&={\frac {23}{15}}\end{cases}}}
{
w
−
x
+
2
y
−
3
5
z
=
171
20
−
2
5
w
−
2
3
x
+
2
3
y
+
5
z
=
−
407
30
−
w
−
3
5
x
−
2
y
+
z
=
−
291
20
−
1
4
w
+
4
x
−
y
+
1
5
z
=
517
80
{\displaystyle {\begin{cases}w-x+2y-{\frac {3}{5}}z&={\frac {171}{20}}\\-{\frac {2}{5}}w-{\frac {2}{3}}x+{\frac {2}{3}}y+5z&=-{\frac {407}{30}}\\-w-{\frac {3}{5}}x-2y+z&=-{\frac {291}{20}}\\-{\frac {1}{4}}w+4x-y+{\frac {1}{5}}z&={\frac {517}{80}}\end{cases}}}
{
−
1
4
w
−
1
5
x
−
2
y
−
5
z
=
−
221
40
5
3
w
−
x
−
5
2
y
−
4
z
=
−
31
6
5
4
(
w
+
4
x
+
2
z
)
=
105
8
5
4
w
+
4
x
+
2
5
y
+
3
2
z
=
81
8
{\displaystyle {\begin{cases}-{\frac {1}{4}}w-{\frac {1}{5}}x-2y-5z&=-{\frac {221}{40}}\\{\frac {5}{3}}w-x-{\frac {5}{2}}y-4z&=-{\frac {31}{6}}\\{\frac {5}{4}}(w+4x+2z)&={\frac {105}{8}}\\{\frac {5}{4}}w+4x+{\frac {2}{5}}y+{\frac {3}{2}}z&={\frac {81}{8}}\end{cases}}}
{
−
3
2
w
+
4
5
x
+
y
+
5
z
=
−
41
4
−
w
+
1
5
x
+
2
5
y
+
3
2
z
=
−
61
20
−
5
w
+
4
3
x
−
5
2
y
−
3
4
z
=
−
1
3
1
6
(
−
2
w
−
10
y
+
9
z
)
=
−
1
{\displaystyle {\begin{cases}-{\frac {3}{2}}w+{\frac {4}{5}}x+y+5z&=-{\frac {41}{4}}\\-w+{\frac {1}{5}}x+{\frac {2}{5}}y+{\frac {3}{2}}z&=-{\frac {61}{20}}\\-5w+{\frac {4}{3}}x-{\frac {5}{2}}y-{\frac {3}{4}}z&=-{\frac {1}{3}}\\{\frac {1}{6}}(-2w-10y+9z)&=-1\end{cases}}}
{
3
4
x
−
3
y
−
1
4
z
=
139
40
1
6
(
9
x
−
6
y
+
4
z
)
=
77
60
−
2
w
+
3
4
x
−
4
5
y
+
1
2
z
=
91
10
−
1
5
w
−
5
y
+
4
z
=
181
20
{\displaystyle {\begin{cases}{\frac {3}{4}}x-3y-{\frac {1}{4}}z&={\frac {139}{40}}\\{\frac {1}{6}}(9x-6y+4z)&={\frac {77}{60}}\\-2w+{\frac {3}{4}}x-{\frac {4}{5}}y+{\frac {1}{2}}z&={\frac {91}{10}}\\-{\frac {1}{5}}w-5y+4z&={\frac {181}{20}}\end{cases}}}
{
1
60
(
−
75
w
−
12
x
−
20
y
−
150
z
)
=
1541
240
1
6
(
−
4
w
+
8
x
−
15
y
−
6
z
)
=
11
3
−
w
−
x
+
3
4
y
+
3
z
=
−
41
4
w
+
1
2
x
+
4
y
+
2
5
z
=
−
173
40
{\displaystyle {\begin{cases}{\frac {1}{60}}(-75w-12x-20y-150z)&={\frac {1541}{240}}\\{\frac {1}{6}}(-4w+8x-15y-6z)&={\frac {11}{3}}\\-w-x+{\frac {3}{4}}y+3z&=-{\frac {41}{4}}\\w+{\frac {1}{2}}x+4y+{\frac {2}{5}}z&=-{\frac {173}{40}}\end{cases}}}
{
−
w
+
x
−
2
y
−
3
5
z
=
29
10
−
4
5
w
−
3
4
x
=
−
321
200
−
5
3
w
+
4
5
x
−
2
3
y
+
3
2
z
=
−
38
15
−
w
−
3
5
x
+
y
+
4
3
z
=
−
137
30
{\displaystyle {\begin{cases}-w+x-2y-{\frac {3}{5}}z&={\frac {29}{10}}\\-{\frac {4}{5}}w-{\frac {3}{4}}x&=-{\frac {321}{200}}\\-{\frac {5}{3}}w+{\frac {4}{5}}x-{\frac {2}{3}}y+{\frac {3}{2}}z&=-{\frac {38}{15}}\\-w-{\frac {3}{5}}x+y+{\frac {4}{3}}z&=-{\frac {137}{30}}\end{cases}}}
{
−
1
5
w
−
x
−
3
2
y
+
z
=
24
5
−
w
+
3
x
−
5
2
y
+
5
z
=
−
11
x
+
5
y
+
3
4
z
=
3
4
1
10
(
−
5
w
−
5
x
+
4
y
−
5
z
)
=
63
20
{\displaystyle {\begin{cases}-{\frac {1}{5}}w-x-{\frac {3}{2}}y+z&={\frac {24}{5}}\\-w+3x-{\frac {5}{2}}y+5z&=-11\\x+5y+{\frac {3}{4}}z&={\frac {3}{4}}\\{\frac {1}{10}}(-5w-5x+4y-5z)&={\frac {63}{20}}\end{cases}}}
{
−
4
5
w
−
1
2
x
+
y
+
4
3
z
=
−
451
90
−
w
−
x
+
1
3
y
+
1
5
z
=
−
76
15
1
4
(
−
12
w
+
6
y
+
z
)
=
−
85
12
3
5
x
−
1
4
y
−
4
3
z
=
247
90
{\displaystyle {\begin{cases}-{\frac {4}{5}}w-{\frac {1}{2}}x+y+{\frac {4}{3}}z&=-{\frac {451}{90}}\\-w-x+{\frac {1}{3}}y+{\frac {1}{5}}z&=-{\frac {76}{15}}\\{\frac {1}{4}}(-12w+6y+z)&=-{\frac {85}{12}}\\{\frac {3}{5}}x-{\frac {1}{4}}y-{\frac {4}{3}}z&={\frac {247}{90}}\end{cases}}}
{
2
w
+
3
x
+
2
y
=
−
41
4
2
y
+
4
5
z
=
−
28
5
1
4
(
−
4
x
−
10
y
−
5
z
)
=
111
16
3
4
w
+
4
5
x
−
2
(
y
+
z
)
=
89
20
{\displaystyle {\begin{cases}2w+3x+2y&=-{\frac {41}{4}}\\2y+{\frac {4}{5}}z&=-{\frac {28}{5}}\\{\frac {1}{4}}(-4x-10y-5z)&={\frac {111}{16}}\\{\frac {3}{4}}w+{\frac {4}{5}}x-2(y+z)&={\frac {89}{20}}\end{cases}}}
{
3
w
+
3
5
x
−
2
y
+
4
z
=
−
17
3
1
3
(
w
−
3
x
+
6
z
)
=
2
9
3
w
−
y
+
2
z
=
−
13
3
−
2
y
=
4
3
{\displaystyle {\begin{cases}3w+{\frac {3}{5}}x-2y+4z&=-{\frac {17}{3}}\\{\frac {1}{3}}(w-3x+6z)&={\frac {2}{9}}\\3w-y+2z&=-{\frac {13}{3}}\\-2y&={\frac {4}{3}}\end{cases}}}
{
1
12
(
30
w
−
4
x
+
3
y
−
6
z
)
=
13
12
1
3
(
−
3
w
−
5
x
−
y
)
=
3
2
w
−
3
5
x
−
1
5
y
−
5
4
z
=
27
40
3
5
w
−
x
+
2
y
+
5
2
z
=
11
20
{\displaystyle {\begin{cases}{\frac {1}{12}}(30w-4x+3y-6z)&={\frac {13}{12}}\\{\frac {1}{3}}(-3w-5x-y)&={\frac {3}{2}}\\w-{\frac {3}{5}}x-{\frac {1}{5}}y-{\frac {5}{4}}z&={\frac {27}{40}}\\{\frac {3}{5}}w-x+2y+{\frac {5}{2}}z&={\frac {11}{20}}\end{cases}}}
{
−
5
w
−
x
−
3
5
y
+
4
z
=
103
15
w
−
1
2
x
+
y
+
5
3
z
=
37
90
1
5
(
−
4
w
−
x
−
3
y
+
10
z
)
=
151
75
1
10
(
−
15
w
−
4
x
−
6
z
)
=
22
25
{\displaystyle {\begin{cases}-5w-x-{\frac {3}{5}}y+4z&={\frac {103}{15}}\\w-{\frac {1}{2}}x+y+{\frac {5}{3}}z&={\frac {37}{90}}\\{\frac {1}{5}}(-4w-x-3y+10z)&={\frac {151}{75}}\\{\frac {1}{10}}(-15w-4x-6z)&={\frac {22}{25}}\end{cases}}}
{
w
−
1
5
x
−
1
2
y
+
2
z
=
641
100
1
12
(
4
w
+
9
x
+
6
(
y
+
z
)
)
=
89
60
1
2
(
−
w
−
3
x
−
2
y
)
=
33
40
5
3
w
−
2
5
x
−
2
3
y
+
3
z
=
957
100
{\displaystyle {\begin{cases}w-{\frac {1}{5}}x-{\frac {1}{2}}y+2z&={\frac {641}{100}}\\{\frac {1}{12}}{\big (}4w+9x+6(y+z){\big )}&={\frac {89}{60}}\\{\frac {1}{2}}(-w-3x-2y)&={\frac {33}{40}}\\{\frac {5}{3}}w-{\frac {2}{5}}x-{\frac {2}{3}}y+3z&={\frac {957}{100}}\end{cases}}}
{
1
3
w
−
4
y
−
3
4
z
=
1379
120
−
3
2
w
+
x
−
y
−
3
z
=
3
2
1
6
(
−
4
w
−
3
x
+
8
y
−
10
z
)
=
−
64
15
2
w
+
1
2
x
+
5
3
z
=
−
4
15
{\displaystyle {\begin{cases}{\frac {1}{3}}w-4y-{\frac {3}{4}}z&={\frac {1379}{120}}\\-{\frac {3}{2}}w+x-y-3z&={\frac {3}{2}}\\{\frac {1}{6}}(-4w-3x+8y-10z)&=-{\frac {64}{15}}\\2w+{\frac {1}{2}}x+{\frac {5}{3}}z&=-{\frac {4}{15}}\end{cases}}}
{
1
12
(
30
w
+
4
x
+
15
y
−
9
z
)
=
151
30
w
−
2
x
−
y
+
1
5
z
=
−
203
25
1
3
w
−
5
4
x
+
y
−
z
=
19
40
3
5
w
+
1
2
x
−
2
z
=
49
20
{\displaystyle {\begin{cases}{\frac {1}{12}}(30w+4x+15y-9z)&={\frac {151}{30}}\\w-2x-y+{\frac {1}{5}}z&=-{\frac {203}{25}}\\{\frac {1}{3}}w-{\frac {5}{4}}x+y-z&={\frac {19}{40}}\\{\frac {3}{5}}w+{\frac {1}{2}}x-2z&={\frac {49}{20}}\end{cases}}}
{
1
2
(
w
−
2
x
+
3
y
+
2
z
)
=
3
20
1
5
(
−
4
x
+
y
−
z
)
=
1
5
−
w
−
x
+
1
3
y
+
z
=
97
60
1
4
w
+
4
3
x
+
y
−
1
4
z
=
−
23
10
{\displaystyle {\begin{cases}{\frac {1}{2}}(w-2x+3y+2z)&={\frac {3}{20}}\\{\frac {1}{5}}(-4x+y-z)&={\frac {1}{5}}\\-w-x+{\frac {1}{3}}y+z&={\frac {97}{60}}\\{\frac {1}{4}}w+{\frac {4}{3}}x+y-{\frac {1}{4}}z&=-{\frac {23}{10}}\end{cases}}}
{
−
2
x
−
3
5
z
=
−
23
10
1
20
(
−
15
w
−
4
x
−
80
y
+
8
z
)
=
103
80
1
10
(
−
5
w
−
20
y
−
2
z
)
=
−
3
8
−
w
−
x
−
5
4
y
+
z
=
15
4
{\displaystyle {\begin{cases}-2x-{\frac {3}{5}}z&=-{\frac {23}{10}}\\{\frac {1}{20}}(-15w-4x-80y+8z)&={\frac {103}{80}}\\{\frac {1}{10}}(-5w-20y-2z)&=-{\frac {3}{8}}\\-w-x-{\frac {5}{4}}y+z&={\frac {15}{4}}\end{cases}}}
{
−
1
5
w
−
5
4
x
+
4
3
y
+
1
4
z
=
1121
144
1
5
w
−
y
−
5
2
z
=
−
33
8
−
5
2
w
−
4
3
x
+
3
y
+
2
5
z
=
40
3
−
5
w
−
1
2
x
−
y
+
4
5
z
=
67
6
{\displaystyle {\begin{cases}-{\frac {1}{5}}w-{\frac {5}{4}}x+{\frac {4}{3}}y+{\frac {1}{4}}z&={\frac {1121}{144}}\\{\frac {1}{5}}w-y-{\frac {5}{2}}z&=-{\frac {33}{8}}\\-{\frac {5}{2}}w-{\frac {4}{3}}x+3y+{\frac {2}{5}}z&={\frac {40}{3}}\\-5w-{\frac {1}{2}}x-y+{\frac {4}{5}}z&={\frac {67}{6}}\end{cases}}}
{
2
5
w
+
x
+
y
−
4
z
=
−
59
15
1
4
(
−
2
w
+
2
x
+
2
y
−
z
)
=
2
15
5
w
−
4
3
x
−
5
2
y
−
2
5
z
=
−
2719
450
5
2
w
+
4
x
−
3
4
y
−
2
5
z
=
−
2671
300
{\displaystyle {\begin{cases}{\frac {2}{5}}w+x+y-4z&=-{\frac {59}{15}}\\{\frac {1}{4}}(-2w+2x+2y-z)&={\frac {2}{15}}\\5w-{\frac {4}{3}}x-{\frac {5}{2}}y-{\frac {2}{5}}z&=-{\frac {2719}{450}}\\{\frac {5}{2}}w+4x-{\frac {3}{4}}y-{\frac {2}{5}}z&=-{\frac {2671}{300}}\end{cases}}}
{
−
4
5
w
−
1
3
x
+
3
2
y
=
−
103
105
2
x
+
2
5
y
−
1
3
z
=
−
737
315
−
1
7
w
+
x
−
y
−
5
6
z
=
−
695
882
−
6
7
w
+
7
x
−
2
3
(
y
+
z
)
=
−
3233
441
{\displaystyle {\begin{cases}-{\frac {4}{5}}w-{\frac {1}{3}}x+{\frac {3}{2}}y&=-{\frac {103}{105}}\\2x+{\frac {2}{5}}y-{\frac {1}{3}}z&=-{\frac {737}{315}}\\-{\frac {1}{7}}w+x-y-{\frac {5}{6}}z&=-{\frac {695}{882}}\\-{\frac {6}{7}}w+7x-{\frac {2}{3}}(y+z)&=-{\frac {3233}{441}}\end{cases}}}
{
1
14
(
−
7
w
+
4
y
+
49
z
)
=
−
25
8
−
3
4
w
+
7
3
x
−
3
y
−
5
3
z
=
145
18
−
3
2
(
y
+
2
z
)
=
39
8
3
5
w
+
5
4
x
−
7
6
y
+
3
4
z
=
37
16
{\displaystyle {\begin{cases}{\frac {1}{14}}(-7w+4y+49z)&=-{\frac {25}{8}}\\-{\frac {3}{4}}w+{\frac {7}{3}}x-3y-{\frac {5}{3}}z&={\frac {145}{18}}\\-{\frac {3}{2}}(y+2z)&={\frac {39}{8}}\\{\frac {3}{5}}w+{\frac {5}{4}}x-{\frac {7}{6}}y+{\frac {3}{4}}z&={\frac {37}{16}}\end{cases}}}
{
−
5
3
w
+
3
2
x
+
y
+
7
z
=
677
60
−
2
5
w
−
4
3
x
−
2
7
(
7
y
+
z
)
=
−
58
105
−
4
5
w
+
x
−
7
3
y
+
5
z
=
199
30
−
7
w
+
7
5
x
−
2
3
y
+
3
z
=
527
30
{\displaystyle {\begin{cases}-{\frac {5}{3}}w+{\frac {3}{2}}x+y+7z&={\frac {677}{60}}\\-{\frac {2}{5}}w-{\frac {4}{3}}x-{\frac {2}{7}}(7y+z)&=-{\frac {58}{105}}\\-{\frac {4}{5}}w+x-{\frac {7}{3}}y+5z&={\frac {199}{30}}\\-7w+{\frac {7}{5}}x-{\frac {2}{3}}y+3z&={\frac {527}{30}}\end{cases}}}
{
−
4
3
w
+
7
6
x
−
1
5
y
−
z
=
551
1260
1
2
w
+
x
−
3
4
y
−
7
6
z
=
283
112
4
7
w
+
2
5
x
−
4
7
y
+
3
z
=
26
21
1
10
(
−
5
w
+
5
x
+
6
y
+
60
z
)
=
−
113
60
{\displaystyle {\begin{cases}-{\frac {4}{3}}w+{\frac {7}{6}}x-{\frac {1}{5}}y-z&={\frac {551}{1260}}\\{\frac {1}{2}}w+x-{\frac {3}{4}}y-{\frac {7}{6}}z&={\frac {283}{112}}\\{\frac {4}{7}}w+{\frac {2}{5}}x-{\frac {4}{7}}y+3z&={\frac {26}{21}}\\{\frac {1}{10}}(-5w+5x+6y+60z)&=-{\frac {113}{60}}\end{cases}}}
{
1
2
(
−
w
+
10
x
−
6
y
−
8
z
)
=
−
1147
84
−
1
7
w
+
2
3
x
+
1
4
y
+
2
7
z
=
−
50
147
1
30
(
−
18
w
−
24
x
+
24
y
−
25
z
)
=
334
105
1
15
(
12
w
+
5
x
−
9
y
)
=
−
71
30
{\displaystyle {\begin{cases}{\frac {1}{2}}(-w+10x-6y-8z)&=-{\frac {1147}{84}}\\-{\frac {1}{7}}w+{\frac {2}{3}}x+{\frac {1}{4}}y+{\frac {2}{7}}z&=-{\frac {50}{147}}\\{\frac {1}{30}}(-18w-24x+24y-25z)&={\frac {334}{105}}\\{\frac {1}{15}}(12w+5x-9y)&=-{\frac {71}{30}}\end{cases}}}
{
6
5
x
−
3
y
+
5
3
z
=
1059
175
1
12
(
14
w
−
9
y
−
4
z
)
=
269
84
w
−
3
5
x
+
2
y
+
6
7
z
=
−
17057
3675
4
3
w
+
1
5
x
+
y
−
7
3
z
=
27
25
{\displaystyle {\begin{cases}{\frac {6}{5}}x-3y+{\frac {5}{3}}z&={\frac {1059}{175}}\\{\frac {1}{12}}(14w-9y-4z)&={\frac {269}{84}}\\w-{\frac {3}{5}}x+2y+{\frac {6}{7}}z&=-{\frac {17057}{3675}}\\{\frac {4}{3}}w+{\frac {1}{5}}x+y-{\frac {7}{3}}z&={\frac {27}{25}}\end{cases}}}
{
−
3
w
−
2
x
−
y
=
0
w
−
x
−
5
2
y
+
7
2
z
=
25
4
w
−
3
4
x
+
2
3
y
+
5
z
=
43
12
1
6
(
−
w
+
18
x
−
3
y
−
42
z
)
=
−
37
6
{\displaystyle {\begin{cases}-3w-2x-y&=0\\w-x-{\frac {5}{2}}y+{\frac {7}{2}}z&={\frac {25}{4}}\\w-{\frac {3}{4}}x+{\frac {2}{3}}y+5z&={\frac {43}{12}}\\{\frac {1}{6}}(-w+18x-3y-42z)&=-{\frac {37}{6}}\end{cases}}}
{
4
w
+
4
7
x
−
3
y
−
z
=
1679
980
−
4
5
x
+
7
6
y
−
z
=
−
61
28
1
4
w
−
x
−
1
2
y
−
4
3
z
=
−
2671
1680
−
2
w
−
3
7
x
−
6
z
=
−
398
49
{\displaystyle {\begin{cases}4w+{\frac {4}{7}}x-3y-z&={\frac {1679}{980}}\\-{\frac {4}{5}}x+{\frac {7}{6}}y-z&=-{\frac {61}{28}}\\{\frac {1}{4}}w-x-{\frac {1}{2}}y-{\frac {4}{3}}z&=-{\frac {2671}{1680}}\\-2w-{\frac {3}{7}}x-6z&=-{\frac {398}{49}}\end{cases}}}
{
2
5
w
−
4
7
x
−
3
4
y
+
3
z
=
39
28
1
2
(
−
w
+
4
x
+
y
+
2
z
)
=
13
7
−
4
7
w
+
1
6
x
−
3
2
y
−
4
5
z
=
688
245
5
3
w
−
5
4
x
+
y
−
1
5
z
=
−
1753
420
{\displaystyle {\begin{cases}{\frac {2}{5}}w-{\frac {4}{7}}x-{\frac {3}{4}}y+3z&={\frac {39}{28}}\\{\frac {1}{2}}(-w+4x+y+2z)&={\frac {13}{7}}\\-{\frac {4}{7}}w+{\frac {1}{6}}x-{\frac {3}{2}}y-{\frac {4}{5}}z&={\frac {688}{245}}\\{\frac {5}{3}}w-{\frac {5}{4}}x+y-{\frac {1}{5}}z&=-{\frac {1753}{420}}\end{cases}}}
{
2
3
w
−
1
7
x
+
2
y
=
−
2
2
w
+
4
7
x
+
7
5
y
−
z
=
343
60
−
w
−
4
7
x
−
3
2
y
+
5
7
z
=
−
419
168
−
w
+
4
5
x
+
y
+
4
3
z
=
−
391
180
{\displaystyle {\begin{cases}{\frac {2}{3}}w-{\frac {1}{7}}x+2y&=-2\\2w+{\frac {4}{7}}x+{\frac {7}{5}}y-z&={\frac {343}{60}}\\-w-{\frac {4}{7}}x-{\frac {3}{2}}y+{\frac {5}{7}}z&=-{\frac {419}{168}}\\-w+{\frac {4}{5}}x+y+{\frac {4}{3}}z&=-{\frac {391}{180}}\end{cases}}}
{
5
4
w
+
2
5
x
−
1
2
y
+
4
z
=
83
21
2
3
w
+
3
4
x
−
2
y
−
3
z
=
328
315
−
3
w
+
5
7
x
−
2
y
+
4
3
z
=
146
245
5
2
w
+
2
7
y
−
2
z
=
221
420
{\displaystyle {\begin{cases}{\frac {5}{4}}w+{\frac {2}{5}}x-{\frac {1}{2}}y+4z&={\frac {83}{21}}\\{\frac {2}{3}}w+{\frac {3}{4}}x-2y-3z&={\frac {328}{315}}\\-3w+{\frac {5}{7}}x-2y+{\frac {4}{3}}z&={\frac {146}{245}}\\{\frac {5}{2}}w+{\frac {2}{7}}y-2z&={\frac {221}{420}}\end{cases}}}
{
−
2
w
+
7
x
+
7
y
−
1
2
z
=
−
19
12
1
28
(
−
14
w
−
21
y
−
24
z
)
=
11
84
1
12
(
−
6
w
−
21
x
+
4
(
y
−
7
z
)
)
=
−
97
24
−
1
2
w
−
4
3
x
+
6
7
y
+
1
2
z
=
−
3
28
{\displaystyle {\begin{cases}-2w+7x+7y-{\frac {1}{2}}z&=-{\frac {19}{12}}\\{\frac {1}{28}}(-14w-21y-24z)&={\frac {11}{84}}\\{\frac {1}{12}}{\big (}-6w-21x+4(y-7z){\big )}&=-{\frac {97}{24}}\\-{\frac {1}{2}}w-{\frac {4}{3}}x+{\frac {6}{7}}y+{\frac {1}{2}}z&=-{\frac {3}{28}}\end{cases}}}
{
−
3
2
w
+
7
4
x
+
7
y
+
z
=
281
40
1
5
w
+
2
x
−
3
5
y
−
5
7
z
=
376
175
3
w
+
x
+
7
5
y
−
7
3
z
=
251
150
5
2
w
−
1
3
x
−
y
−
z
=
−
9
10
{\displaystyle {\begin{cases}-{\frac {3}{2}}w+{\frac {7}{4}}x+7y+z&={\frac {281}{40}}\\{\frac {1}{5}}w+2x-{\frac {3}{5}}y-{\frac {5}{7}}z&={\frac {376}{175}}\\3w+x+{\frac {7}{5}}y-{\frac {7}{3}}z&={\frac {251}{150}}\\{\frac {5}{2}}w-{\frac {1}{3}}x-y-z&=-{\frac {9}{10}}\end{cases}}}
{
2
3
w
−
2
x
+
4
y
+
3
2
z
=
−
148
105
7
6
w
+
5
3
x
+
y
−
z
=
−
22
5
1
6
(
−
12
w
−
4
x
−
7
y
)
=
503
210
3
5
w
−
3
2
x
+
4
7
y
+
z
=
83
35
{\displaystyle {\begin{cases}{\frac {2}{3}}w-2x+4y+{\frac {3}{2}}z&=-{\frac {148}{105}}\\{\frac {7}{6}}w+{\frac {5}{3}}x+y-z&=-{\frac {22}{5}}\\{\frac {1}{6}}(-12w-4x-7y)&={\frac {503}{210}}\\{\frac {3}{5}}w-{\frac {3}{2}}x+{\frac {4}{7}}y+z&={\frac {83}{35}}\end{cases}}}
{
−
1
3
w
−
3
7
x
+
7
4
y
−
3
2
z
=
−
4651
336
5
3
w
+
6
x
−
2
y
−
1
4
z
=
437
12
−
1
3
w
+
5
4
x
−
2
z
=
−
41
6
−
5
4
w
−
5
2
x
+
7
5
y
+
z
=
−
48
5
{\displaystyle {\begin{cases}-{\frac {1}{3}}w-{\frac {3}{7}}x+{\frac {7}{4}}y-{\frac {3}{2}}z&=-{\frac {4651}{336}}\\{\frac {5}{3}}w+6x-2y-{\frac {1}{4}}z&={\frac {437}{12}}\\-{\frac {1}{3}}w+{\frac {5}{4}}x-2z&=-{\frac {41}{6}}\\-{\frac {5}{4}}w-{\frac {5}{2}}x+{\frac {7}{5}}y+z&=-{\frac {48}{5}}\end{cases}}}
{
4
5
w
−
5
7
x
−
3
2
y
−
z
=
−
137
28
3
5
w
+
5
3
x
+
3
y
−
5
7
z
=
31
4
1
4
(
10
w
+
3
x
−
y
−
12
z
)
=
−
7
6
1
4
(
−
8
w
−
10
x
+
7
y
+
2
z
)
=
−
71
24
{\displaystyle {\begin{cases}{\frac {4}{5}}w-{\frac {5}{7}}x-{\frac {3}{2}}y-z&=-{\frac {137}{28}}\\{\frac {3}{5}}w+{\frac {5}{3}}x+3y-{\frac {5}{7}}z&={\frac {31}{4}}\\{\frac {1}{4}}(10w+3x-y-12z)&=-{\frac {7}{6}}\\{\frac {1}{4}}(-8w-10x+7y+2z)&=-{\frac {71}{24}}\end{cases}}}
{
w
−
y
+
1
4
z
=
−
9
10
1
2
(
−
2
w
+
x
+
3
y
−
z
)
=
43
60
−
w
+
2
7
x
−
1
2
y
=
20
21
1
2
(
w
−
4
x
+
2
y
+
z
)
=
1
30
{\displaystyle {\begin{cases}w-y+{\frac {1}{4}}z&=-{\frac {9}{10}}\\{\frac {1}{2}}(-2w+x+3y-z)&={\frac {43}{60}}\\-w+{\frac {2}{7}}x-{\frac {1}{2}}y&={\frac {20}{21}}\\{\frac {1}{2}}(w-4x+2y+z)&={\frac {1}{30}}\end{cases}}}
{
−
1
3
w
−
2
5
x
+
z
=
−
8
9
−
6
5
w
+
3
2
x
−
4
7
y
−
1
2
z
=
9
10
1
30
(
45
w
+
10
x
−
6
y
+
35
z
)
=
−
5
3
3
w
+
7
5
x
−
2
y
−
5
3
z
=
2
3
{\displaystyle {\begin{cases}-{\frac {1}{3}}w-{\frac {2}{5}}x+z&=-{\frac {8}{9}}\\-{\frac {6}{5}}w+{\frac {3}{2}}x-{\frac {4}{7}}y-{\frac {1}{2}}z&={\frac {9}{10}}\\{\frac {1}{30}}(45w+10x-6y+35z)&=-{\frac {5}{3}}\\3w+{\frac {7}{5}}x-2y-{\frac {5}{3}}z&={\frac {2}{3}}\end{cases}}}
{
w
−
x
+
y
−
3
5
z
=
7
10
−
7
5
w
−
4
7
x
−
y
+
2
3
z
=
−
6
35
2
w
+
5
x
=
−
2
x
−
1
2
y
−
7
4
z
=
101
40
{\displaystyle {\begin{cases}w-x+y-{\frac {3}{5}}z&={\frac {7}{10}}\\-{\frac {7}{5}}w-{\frac {4}{7}}x-y+{\frac {2}{3}}z&=-{\frac {6}{35}}\\2w+5x&=-2\\x-{\frac {1}{2}}y-{\frac {7}{4}}z&={\frac {101}{40}}\end{cases}}}
{
−
1
6
w
−
4
5
x
−
7
4
y
+
z
=
3
16
3
5
(
z
−
2
y
)
−
7
6
x
=
7
12
3
w
−
2
7
x
−
2
7
y
+
z
=
−
19
5
4
5
w
+
4
5
x
+
5
2
y
+
3
4
z
=
−
147
25
{\displaystyle {\begin{cases}-{\frac {1}{6}}w-{\frac {4}{5}}x-{\frac {7}{4}}y+z&={\frac {3}{16}}\\{\frac {3}{5}}(z-2y)-{\frac {7}{6}}x&={\frac {7}{12}}\\3w-{\frac {2}{7}}x-{\frac {2}{7}}y+z&=-{\frac {19}{5}}\\{\frac {4}{5}}w+{\frac {4}{5}}x+{\frac {5}{2}}y+{\frac {3}{4}}z&=-{\frac {147}{25}}\end{cases}}}
תשובות
[
עריכה
]
(
−
3
,
0
,
2
,
2
)
{\displaystyle (-3,0,2,2)}
(
2
,
−
2
,
0
,
2
)
{\displaystyle (2,-2,0,2)}
(
−
1
,
−
3
,
1
,
−
2
)
{\displaystyle (-1,-3,1,-2)}
(
0
,
−
3
,
−
1
,
2
)
{\displaystyle (0,-3,-1,2)}
(
0
,
−
3
,
−
2
,
−
1
)
{\displaystyle (0,-3,-2,-1)}
(
0
,
3
,
2
,
3
)
{\displaystyle (0,3,2,3)}
(
3
,
−
3
,
3
,
−
2
)
{\displaystyle (3,-3,3,-2)}
(
3
,
−
2
,
0
,
1
)
{\displaystyle (3,-2,0,1)}
(
3
,
3
,
3
,
2
)
{\displaystyle (3,3,3,2)}
(
−
3
,
0
,
1
,
0
)
{\displaystyle (-3,0,1,0)}
(
0
,
−
2
,
3
,
−
3
)
{\displaystyle (0,-2,3,-3)}
(
2
,
−
1
,
−
3
,
1
)
{\displaystyle (2,-1,-3,1)}
(
−
3
,
−
2
,
−
3
,
3
)
{\displaystyle (-3,-2,-3,3)}
(
3
,
3
,
−
3
,
−
2
)
{\displaystyle (3,3,-3,-2)}
(
0
,
3
,
1
,
−
2
)
{\displaystyle (0,3,1,-2)}
(
−
2
,
3
,
0
,
−
3
)
{\displaystyle (-2,3,0,-3)}
(
2
,
0
,
−
1
,
2
)
{\displaystyle (2,0,-1,2)}
(
3
,
−
2
,
−
3
,
1
)
{\displaystyle (3,-2,-3,1)}
(
−
2
,
2
,
−
3
,
3
)
{\displaystyle (-2,2,-3,3)}
(
−
3
,
−
2
,
1
,
−
1
)
{\displaystyle (-3,-2,1,-1)}
(
−
4
,
0
,
0
,
−
1
)
{\displaystyle (-4,0,0,-1)}
(
3
,
0
,
−
3
,
−
4
)
{\displaystyle (3,0,-3,-4)}
(
−
3
,
−
4
,
4
,
−
3
)
{\displaystyle (-3,-4,4,-3)}
(
3
,
−
2
,
2
,
3
)
{\displaystyle (3,-2,2,3)}
(
1
,
−
2
,
3
,
−
2
)
{\displaystyle (1,-2,3,-2)}
(
2
,
−
4
,
4
,
1
)
{\displaystyle (2,-4,4,1)}
(
2
,
1
,
3
,
0
)
{\displaystyle (2,1,3,0)}
(
−
1
,
2
,
−
1
,
2
)
{\displaystyle (-1,2,-1,2)}
(
4
,
4
,
−
2
,
2
)
{\displaystyle (4,4,-2,2)}
(
0
,
0
,
2
,
3
)
{\displaystyle (0,0,2,3)}
(
1
,
−
2
,
1
,
−
3
)
{\displaystyle (1,-2,1,-3)}
(
1
,
−
4
,
−
4
,
−
3
)
{\displaystyle (1,-4,-4,-3)}
(
0
,
−
4
,
2
,
2
)
{\displaystyle (0,-4,2,2)}
(
0
,
−
2
,
−
3
,
0
)
{\displaystyle (0,-2,-3,0)}
(
2
,
−
3
,
0
,
−
3
)
{\displaystyle (2,-3,0,-3)}
(
−
2
,
4
,
3
,
3
)
{\displaystyle (-2,4,3,3)}
(
−
3
,
3
,
−
2
,
−
3
)
{\displaystyle (-3,3,-2,-3)}
(
−
1
,
1
,
0
,
0
)
{\displaystyle (-1,1,0,0)}
(
1
,
4
,
1
,
3
)
{\displaystyle (1,4,1,3)}
(
3
,
3
,
2
,
1
)
{\displaystyle (3,3,2,1)}
(
−
1
,
1
,
2
,
−
3
)
{\displaystyle (-1,1,2,-3)}
(
2
,
1
,
−
2
,
2
)
{\displaystyle (2,1,-2,2)}
(
0
,
−
4
,
−
3
,
−
4
)
{\displaystyle (0,-4,-3,-4)}
(
−
4
,
4
,
3
,
−
4
)
{\displaystyle (-4,4,3,-4)}
(
1
,
1
,
−
2
,
4
)
{\displaystyle (1,1,-2,4)}
(
−
4
,
−
2
,
3
,
0
)
{\displaystyle (-4,-2,3,0)}
(
3
,
−
3
,
4
,
4
)
{\displaystyle (3,-3,4,4)}
(
1
,
2
,
−
4
,
4
)
{\displaystyle (1,2,-4,4)}
(
−
2
,
−
4
,
−
3
,
0
)
{\displaystyle (-2,-4,-3,0)}
(
−
1
,
4
,
−
4
,
−
2
)
{\displaystyle (-1,4,-4,-2)}
(
−
4
5
,
0
,
0
,
−
3
5
)
{\displaystyle \left(-{\frac {4}{5}},0,0,-{\frac {3}{5}}\right)}
(
2
3
,
5
,
−
3
,
1
)
{\displaystyle \left({\frac {2}{3}},5,-3,1\right)}
(
−
3
2
,
1
,
0
,
3
)
{\displaystyle \left(-{\frac {3}{2}},1,0,3\right)}
(
−
5
4
,
1
4
,
−
1
2
,
−
2
3
)
{\displaystyle \left(-{\frac {5}{4}},{\frac {1}{4}},-{\frac {1}{2}},-{\frac {2}{3}}\right)}
(
1
5
,
4
,
4
5
,
3
)
{\displaystyle \left({\frac {1}{5}},4,{\frac {4}{5}},3\right)}
(
−
5
4
,
0
,
−
5
2
,
3
4
)
{\displaystyle \left(-{\frac {5}{4}},0,-{\frac {5}{2}},{\frac {3}{4}}\right)}
(
−
2
5
,
3
,
−
1
4
,
−
3
)
{\displaystyle \left(-{\frac {2}{5}},3,-{\frac {1}{4}},-3\right)}
(
−
2
5
,
−
1
2
,
−
1
2
,
−
2
)
{\displaystyle \left(-{\frac {2}{5}},-{\frac {1}{2}},-{\frac {1}{2}},-2\right)}
(
−
5
4
,
0
,
−
4
5
,
−
3
5
)
{\displaystyle \left(-{\frac {5}{4}},0,-{\frac {4}{5}},-{\frac {3}{5}}\right)}
(
2
,
4
,
2
5
,
2
3
)
{\displaystyle \left(2,4,{\frac {2}{5}},{\frac {2}{3}}\right)}
(
1
3
,
2
,
1
5
,
3
2
)
{\displaystyle \left({\frac {1}{3}},2,{\frac {1}{5}},{\frac {3}{2}}\right)}
(
3
,
5
,
−
3
,
−
1
4
)
{\displaystyle \left(3,5,-3,-{\frac {1}{4}}\right)}
(
2
,
0
,
1
,
1
2
)
{\displaystyle \left(2,0,1,{\frac {1}{2}}\right)}
(
−
5
2
,
−
3
4
,
−
3
2
,
0
)
{\displaystyle \left(-{\frac {5}{2}},-{\frac {3}{4}},-{\frac {3}{2}},0\right)}
(
−
1
5
,
−
5
4
,
1
2
,
−
4
)
{\displaystyle \left(-{\frac {1}{5}},-{\frac {5}{4}},{\frac {1}{2}},-4\right)}
(
−
3
4
,
−
1
,
−
3
,
5
4
)
{\displaystyle \left(-{\frac {3}{4}},-1,-3,{\frac {5}{4}}\right)}
(
3
2
,
−
2
5
,
−
2
,
3
5
)
{\displaystyle \left({\frac {3}{2}},-{\frac {2}{5}},-2,{\frac {3}{5}}\right)}
(
−
5
,
1
,
1
,
−
3
2
)
{\displaystyle \left(-5,1,1,-{\frac {3}{2}}\right)}
(
3
,
−
2
,
−
1
3
,
4
3
)
{\displaystyle \left(3,-2,-{\frac {1}{3}},{\frac {4}{3}}\right)}
(
1
4
,
−
5
2
,
−
3
4
,
−
3
)
{\displaystyle \left({\frac {1}{4}},-{\frac {5}{2}},-{\frac {3}{4}},-3\right)}
(
−
5
3
,
−
2
3
,
−
1
2
,
−
4
3
)
{\displaystyle \left(-{\frac {5}{3}},-{\frac {2}{3}},-{\frac {1}{2}},-{\frac {4}{3}}\right)}
(
−
1
,
−
1
,
1
2
,
1
2
)
{\displaystyle \left(-1,-1,{\frac {1}{2}},{\frac {1}{2}}\right)}
(
−
1
5
,
0
,
2
3
,
−
4
5
)
{\displaystyle \left(-{\frac {1}{5}},0,{\frac {2}{3}},-{\frac {4}{5}}\right)}
(
−
4
5
,
1
,
4
,
−
5
4
)
{\displaystyle \left(-{\frac {4}{5}},1,4,-{\frac {5}{4}}\right)}
(
−
3
5
,
−
3
,
1
2
,
−
2
5
)
{\displaystyle \left(-{\frac {3}{5}},-3,{\frac {1}{2}},-{\frac {2}{5}}\right)}
(
5
2
,
3
,
−
3
5
,
0
)
{\displaystyle \left({\frac {5}{2}},3,-{\frac {3}{5}},0\right)}
(
−
3
4
,
−
1
,
1
,
−
1
5
)
{\displaystyle \left(-{\frac {3}{4}},-1,1,-{\frac {1}{5}}\right)}
(
1
4
,
1
5
,
3
,
−
5
4
)
{\displaystyle \left({\frac {1}{4}},{\frac {1}{5}},3,-{\frac {5}{4}}\right)}
(
−
5
,
2
3
,
5
4
,
−
5
3
)
{\displaystyle \left(-5,{\frac {2}{3}},{\frac {5}{4}},-{\frac {5}{3}}\right)}
(
−
4
3
,
1
,
4
5
,
−
1
)
{\displaystyle \left(-{\frac {4}{3}},1,{\frac {4}{5}},-1\right)}
(
−
1
,
−
4
7
,
1
3
,
4
7
)
{\displaystyle \left(-1,-{\frac {4}{7}},{\frac {1}{3}},{\frac {4}{7}}\right)}
(
2
3
,
−
7
4
,
−
3
4
,
0
)
{\displaystyle \left({\frac {2}{3}},-{\frac {7}{4}},-{\frac {3}{4}},0\right)}
(
1
2
,
1
5
,
1
,
−
2
)
{\displaystyle \left({\frac {1}{2}},{\frac {1}{5}},1,-2\right)}
(
5
7
,
−
7
4
,
−
1
7
,
2
3
)
{\displaystyle \left({\frac {5}{7}},-{\frac {7}{4}},-{\frac {1}{7}},{\frac {2}{3}}\right)}
(
−
3
2
,
2
,
1
7
,
−
5
6
)
{\displaystyle \left(-{\frac {3}{2}},2,{\frac {1}{7}},-{\frac {5}{6}}\right)}
(
2
5
,
−
7
3
,
−
6
7
,
1
)
{\displaystyle \left({\frac {2}{5}},-{\frac {7}{3}},-{\frac {6}{7}},1\right)}
(
−
1
,
−
1
,
1
2
,
1
)
{\displaystyle \left(-1,-1,{\frac {1}{2}},1\right)}
(
2
7
,
−
3
5
,
5
4
,
1
4
)
{\displaystyle \left({\frac {2}{7}},-{\frac {3}{5}},{\frac {5}{4}},{\frac {1}{4}}\right)}
(
1
,
−
5
3
,
1
3
,
−
5
7
)
{\displaystyle \left(1,-{\frac {5}{3}},{\frac {1}{3}},-{\frac {5}{7}}\right)}
(
7
2
,
−
7
4
,
−
1
6
,
3
)
{\displaystyle \left({\frac {7}{2}},-{\frac {7}{4}},-{\frac {1}{6}},3\right)}
(
−
2
7
,
−
5
4
,
3
5
,
5
6
)
{\displaystyle \left(-{\frac {2}{7}},-{\frac {5}{4}},{\frac {3}{5}},{\frac {5}{6}}\right)}
(
1
2
,
−
1
,
3
2
,
−
4
3
)
{\displaystyle \left({\frac {1}{2}},-1,{\frac {3}{2}},-{\frac {4}{3}}\right)}
(
3
2
,
3
5
,
4
5
,
2
5
)
{\displaystyle \left({\frac {3}{2}},{\frac {3}{5}},{\frac {4}{5}},{\frac {2}{5}}\right)}
(
−
2
,
−
7
5
,
0
,
2
7
)
{\displaystyle \left(-2,-{\frac {7}{5}},0,{\frac {2}{7}}\right)}
(
6
,
−
1
4
,
7
,
1
)
{\displaystyle \left(6,-{\frac {1}{4}},7,1\right)}
(
3
,
7
6
,
0
,
−
5
4
)
{\displaystyle \left(3,{\frac {7}{6}},0,-{\frac {5}{4}}\right)}
(
−
1
6
,
0
,
2
5
,
−
1
)
{\displaystyle \left(-{\frac {1}{6}},0,{\frac {2}{5}},-1\right)}
(
0
,
0
,
−
1
,
−
1
3
)
{\displaystyle \left(0,0,-1,-{\frac {1}{3}}\right)}
(
−
2
5
,
−
3
5
,
−
3
2
,
0
)
{\displaystyle \left(-{\frac {2}{5}},-{\frac {3}{5}},-{\frac {3}{2}},0\right)}
(
−
1
2
,
−
5
4
,
−
5
2
,
−
3
5
)
{\displaystyle \left(-{\frac {1}{2}},-{\frac {5}{4}},-{\frac {5}{2}},-{\frac {3}{5}}\right)}
קטגוריה
:
אלגברה תיכונית - משוואות