לדלג לתוכן

מבני נתונים ואלגוריתמים - מחברת קורס/אלגוריתמים/תכנון דינאמי/תרגילים/תכנון פרוייקטים/תשובה

מתוך ויקיספר, אוסף הספרים והמדריכים החופשי

המבנה הרקורסיבי

[עריכה]

נגדיר את כאיכות המשוקללת הגבוהה ביותר האפשרית כאשר יש עובדות ו פרוייקטים.



משפט:

=

  • , אם .
  • , אם .


הוכחה: אם יש פרוייקט יחיד, אז ברור שכדאי להקצות את כל העובדות לו (שהרי נתון שהוספת עובדות אינה יכולה להוריד את איכות הפרוייקט). לכן, אם יש פרוייקט יחיד ו עובדות, נקבל שאיכותו הטובה ביותר היא .

נניח שיש פרוייקטים. אם נקצה עובדות לפרוייקט ה, אז איכות הפרוייקט תהיה , ונוותר עם עובדות. על פי הגדרתנו, הוא הטוב ביותר שנוכל להשיג במקרה זה.

פסוודו-קוד

[עריכה]

נתרגם את נוסחת הנסיגה הקודמת לפסוודו-קוד.

Max-Value(i, j)
1	if i == 1
2		return h(1) q(1, j)

3	max-value = 0
4	for j' in [0, ..., j]
5		guess = Max-Value(i - 1, j - j') + h(i) q(i, j')
6		if guess > max-value
7			max-value = guess

8	return max-value

הדפסת פרטי הפתרון

[עריכה]

נוסיף עוד מטריצה גלובלית A כך שA[i][j] מתארת את מספר העובדות האופטימלי שכדאי להקצות לפרוייקט ה אם יש פרוייקטים ו עובדות.

להלן הקוד המכיל את השינויים הנדרשים:

Max-Value(i, j)
1	if i == 1
2		A[1][j] = j
3		return h(1) q(1, j)

4	max-value = 0
5	for j' in [0, ..., j]
6		guess = Max-Value(i - 1, j - j') + h(i) q(i, j')
7		if guess > max-value
8			A[i][j] = j'
9			max-value = guess

10	return max-value

כעת נשתמש במטריצה כדי להדפיס את האלוקציות האופטימליות:

Print-Assignments(i, j)
1	if i == 0
2		return

	# The optimal assignment assigns j' workers to project i.
3	j' = A[i][j] 

4	Print('Assign ' + j' + ' workers to project ' + i)

5 	Print-Assignments(i - 1, j - j')

כך נפעיל את שתי הפונקציות:

1	A = Make-Matrix(k, n)

2	max-value = Max-Value(k, n)

3	Print(max-value)

4	Print-Assignments(k, n)

הוספת תזכור (memoization)

[עריכה]

הפסוודו-קוד הרקורסיבי שמימש את הנוסחה הרקורסיבית, פותר אותן בעיות שוב ושוב. נייצר מטריצה גלובלית M שתשמור את התוצאות שקיבלנו, ונאתחל איברי מטריצה זו לNil. הפסוודו-קוד הבא מראה את השימוש במטריצה M. לשם הפשטות, השמטנו את חלקי הקוד המעדכנים את המטריצה המשמשת להדפסת ההשמות.


Max-Value(i, j)
1	if i == 1
2		M[1][j] = h(1) q(1, j)
3		return h(1) q(1, j)

4	max-value = 0
5	for j' in [0, ..., j]
6		guess = Max-Value(i - 1, j - j') + h(i) q(i, j')
7		if guess > max-value
8			M[i][j] = guess
9			max-value = guess

10	return max-value


ניתוח סיבוכיות

[עריכה]

כרגיל, נגדיר את כזמן הריצה של Max-Value(i, j) כאשר כל קריאה רקורסיבית היא . קל לראות שמתקיים

כרגיל, נמצא את זמן הריצה האמיתי של הקריאות הרקורסיביות כך:





יש לקחת בחשבון גם את זמן הריצה של אתחול המטריצה (M ואת הדפסת פרטי הפתרון:

  • אתחול המטריצה אורך
  • הדפסת הפרטים אורכת

הסיבוכיות הכוללת, לכן, היא