לדלג לתוכן

מבני נתונים ואלגוריתמים - מחברת קורס/אלגוריתמים/תכנון דינאמי/תרגילים/הגשר הזבלה/תשובה

מתוך ויקיספר, אוסף הספרים והמדריכים החופשי

המבנה הרקורסיבי

[עריכה]

נגדיר כ את העלות הזולה ביותר לטיפול בקטע באורך .



משפט:

נתונה על ידי נוסחת הנסיגה הבאה:

  1. אם ,‏ אז .
  2. אם ,‏ אז .



הוכחה: נשים לב לנקודות הבאות:

  1. אם ,‏ אז אין מה לחתוך; ההובלה תעלה .
  2. אם ,‏ אז או שלא חותכים את הקטע, או שכן. אם לא חותכים, עלות השבירה 0, ועלות ההובלה . אם חותכים בנקודה , אז עלות הטיפול בחלק השמאלי תהיה , עפ"י ההגדרה, ,‏ עלות השבירה היא כמובן ,‏ ועלות הטיפול בחלק הימני תהיה, עפ"י ההגדרה, . נותר לקחת מינימום על פני , ולהחליט האם לחתוך או לא.



כדאי לדעת:

אפשר כמובן לחשוב על מבנה רקורסיבי אחר לבעיה, כמו לדוגמה המבנה בדג הסלמון.

מימוש נאיבי

[עריכה]

להלן פסוודו-קוד המממש את נוסחת הנסיגה.

Min-Cost(i)
1	if i == 1
2		return F(1)
	
3	guess-without = F(i)

4	guess-with = 
5	for j in [1, , i - 1]
6		if guess-with> Min-Cost(j) + k + Min-Cost(i - j)
7			guess-with = Min-Cost(j) + k + Min-Cost(i - j)		
		
8	if guess-with < guess-without
9		return guess-with
10	else
11		return guess-without

שימוש בmemoization

[עריכה]

נוסיף memoization.

Min-Cost(i)
1	if M[i] != Nil
2		return M[i]

1	if i == 1
2		M[1] = F(1)
3		return F(1)
	
4	guess-without = F(i)

5	guess-with = 
6	for j in [1,  i - 1]]
7		if guess-with> Min-Cost(j) + k + Min-Cost(i - j)
8			guess-with = Min-Cost(j) + k + Min-Cost(i - j)		
		
9	if guess-with M[i] < guess-without
10		M[i] = guess-with
11		return guess-with
12	else
13		M[i] = guess-without
14		return guess-without

(נניח שהמערך הגלובלי Mבאורך nמאותחל תחילה כולו לNil.)

הדפסת נקודות השבירה

[עריכה]

נוסיף גם מספיק מידע לצורך הדפסת פרטי הפתרון.

Min-Cost(i)
1	if M[i] != Nil
2		return M[i]

1	if i == 1
2		M[1] = F(1)
3		Break[1] = Nil
4		return F(1)
	
5	guess-without = F(i)

6	guess-with = 
7	for j in [1,  i - 1]]
8		if guess-with> Min-Cost(j) + k + Min-Cost(i - j)
9			guess-with = Min-Cost(j) + k + Min-Cost(i - j)		
10			if guess-with 
11				Break[i] = j
				
12	if guess-with 
13		M[i] = guess-with
14		return guess-with
15	else
16		M[i] = guess-without	
17		return guess-without

המערך הגלובלי Break מכיל את ההחלטה שעשינו לגבי כל קטע. Break[i]הוא Nilאם החלטנו לא לחלק את הקטע, והוא אם החלטנו לשבור בנקודה j.

כעת נדפיס את העצירות, ע"י קריאה לPrint-Breaks(n, 0). הפונקציה מוגדרת להלן.

Print-Breaks(i, start)
1	if Break[i] == Nil
2		return
	
3	j = Break[i]
	
4	Print(j + start)

5	Print-Nums(j, start)
6	Print-Nums(i - j, start + j)

הפונקציה מקבלת שני ארגומנטים: אורך הקטע, i,‏ ותחילת הקטע, start.‏ נניח שהפונקציה נקראה עבור שני ערכים ספיציפיים כאלה. אם Break[i] == Nil, אז לא חתכנו את הקטע, ואין מה להדפיס. אם לא, וBreak[i] == j, אז יש להדפיס את הנקודה j(תוך זכירה שאנו נמצאים startמתחילת כל הגשר), את החלק השמאלי, ואת החלק הימני.

ניתוח סיבוכיות

[עריכה]

נגדיר את זמן הריצה של Min-Time(i) בהנחה שכל קריאה רקורסיבית היא כ. קל לראות ש. זמן הריצה חסום מלמעלה על ידי .

גם כאשר לוקחים בחשבון את האתחול והדפסת הפרטים, הפתרון עדיין .