הוכחות מתמטיות/תורת הקבוצות/למת נקודת השבת
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle X \neq \phi}
והפונקצייה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi \colon P(X) \to P(X)}
הינה שומרת הכלה (מונוטונית עולה), כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \forall A,B \in P(X) \colon A \subseteq B \Rightarrow \varphi(A) \subseteq \varphi(B)}
,
אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \exists Y \in P(X) \colon Y=\varphi(Y)}
.
כלומר, לכל פונקצייה שומרת הכלה יש נקודת שבת.
הוכחה[עריכה]
נגדיר קבוצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \mathbf{M}=\{A \in P(X) | A \subseteq \varphi(A)\}}
.
מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \phi \in \mathbf{M}}
ומכאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \mathbf{M} \neq \phi}
.
נסמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle Y=\bigcup \mathbf{M}=\bigcup_{A\in\mathbf{M}} A}
.
מובן כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle Y \in P(X)}
לפי ההגדרה.
מהגדרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle Y}
, לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle A \in \mathbf{M}}
מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle A \subseteq Y}
ומכך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi}
שומרת הכלה נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi(A) \subseteq \varphi(Y)}
. ומכאן גם מתקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \bigcup_{A\in\mathbf{M}} \varphi(A) \subseteq \varphi(Y)}
.
מהגדרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \mathbf{M}}
, לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle A \in \mathbf{M}}
מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle A \subseteq \varphi(A)}
, ולכן גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle Y=\bigcup_{A\in\mathbf{M}} A \subseteq \bigcup_{A\in\mathbf{M}} \varphi(A)}
.
משילוב שתי התוצאות הללו נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle Y \subseteq \varphi(Y)}
.
שוב, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi}
שומרת הכלה ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi(Y) \subseteq \varphi(\varphi(Y))}
, ולכן לפי הגדרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \mathbf{M}}
נקבל כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi(Y) \in \mathbf{M}}
.
מכאן נסיק כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle \varphi(Y) \subseteq \bigcup \mathbf{M}=Y}
.
הראנו הכלה בשני הכיוונים, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "http://localhost:6011/he.wikibooks.org/v1/v1/":): {\displaystyle Y=\varphi(Y)} , כנדרש.