l o g 3 6 + 3 l o g 3 2 − 1 2 − 2 l o g 3 3 2 {\displaystyle {\frac {log_{3}6+3log_{3}2-1}{2-2log_{3}{\frac {3}{2}}}}}
l o g 3 6 + 3 l o g 3 2 − 1 2 − 2 l o g 3 3 2 l o g 3 2 ∗ 3 + 3 l o g 3 2 − 1 2 − 2 l o g 3 3 2 l o g 3 3 + l o g 3 2 + 3 l o g 3 2 − 1 2 − 2 l o g 3 3 2 l o g 3 2 + 3 l o g 3 2 2 ( 1 − l o g 3 3 2 ) log a ( x n ) = n ⋅ log a ( x ) l o g 3 2 + l o g 3 2 3 2 ( 1 − l o g 3 3 ∗ 1 2 ) log a ( x ⋅ y ) = log a ( x ) + log a ( y ) l o g 3 2 4 2 ( 1 − l o g 3 3 − l o g 3 1 2 ) log a ( x n ) = n ⋅ log a ( x ) l o g a ( a ) = 1 l o g a ( a ) = 1 4 l o g 3 2 2 ( 1 − 1 − l o g 3 1 2 ) 2 l o g 3 2 − l o g 3 1 2 log a ( x n ) = n ⋅ log a ( x ) 2 l o g 3 2 l o g 3 1 2 − 1 2 l o g 3 2 l o g 3 2 = 2 {\displaystyle {\begin{aligned}{\frac {log_{3}6+3log_{3}2-1}{2-2log_{3}{\frac {3}{2}}}}\\{\frac {log_{3}{2*3}+3log_{3}2-1}{2-2log_{3}{\frac {3}{2}}}}\\{\frac {log_{3}3+log_{3}2+3log_{3}2-1}{2-2log_{3}{\frac {3}{2}}}}\\{\frac {log_{3}2+3log_{3}2}{2(1-log_{3}{\frac {3}{2}})}}\\\log _{a}(x^{n})=n\cdot \log _{a}(x)\\{\frac {log_{3}2+log_{3}2^{3}}{2(1-log_{3}{3*{\frac {1}{2}}})}}\\{\displaystyle \log _{a}(x\cdot y)=\log _{a}(x)+\log _{a}(y)}\\{\frac {log_{3}2^{4}}{2(1-log_{3}3-log_{3}{\frac {1}{2}})}}\\\log _{a}(x^{n})=n\cdot \log _{a}(x)\\{\displaystyle log_{a}(a)=1}{\displaystyle log_{a}(a)=1}\\{\frac {4log_{3}2}{2(1-1-log_{3}{\frac {1}{2}})}}\\{\frac {2log_{3}2}{-log_{3}{\frac {1}{2}}}}\\{\displaystyle \log _{a}(x^{n})=n\cdot \log _{a}(x)}\\{\frac {2log_{3}2}{log_{3}{\frac {1}{2}}^{-1}}}\\{\frac {2log_{3}2}{log_{3}2}}=2\\\end{aligned}}}