1 − 1 3 + 1 9 + ⋯ + ( − 1 3 ) n − 1 = 3 4 [ 1 − ( − 1 3 n ] {\displaystyle 1-{\frac {1}{3}}+{\frac {1}{9}}+\cdots +({\frac {-1}{3}})^{n-1}={\frac {3}{4}}[1-({\frac {-1}{3}}^{n}]}
L : ( − 1 3 ) n − 1 = ( − 1 3 ) 0 = 1 R : 3 4 [ 1 − ( − 1 3 ) n ] = 3 4 ∗ [ 1 − ( − 1 3 ) 1 ] = 3 4 ∗ 4 3 = 1 1 = 1 {\displaystyle {\begin{aligned}&L:({\frac {-1}{3}})^{n-1}=({\frac {-1}{3}})^{0}=1\\&R:{\frac {3}{4}}[1-({\frac {-1}{3}})^{n}]={\frac {3}{4}}*[1-({\frac {-1}{3}})^{1}]={\frac {3}{4}}*{\frac {4}{3}}=1\\&1=1\\\end{aligned}}}
1 − 1 3 + 1 9 + ⋯ + ( − 1 3 ) k − 1 = 3 4 [ 1 − ( − 1 3 k ] {\displaystyle 1-{\frac {1}{3}}+{\frac {1}{9}}+\cdots +({\frac {-1}{3}})^{k-1}={\frac {3}{4}}[1-({\frac {-1}{3}}^{k}]}
1 3 + 1 9 + ⋯ + ( − 1 3 ) k − 1 ⏟ = 3 4 [ 1 − ( − 1 3 k ] + ( − 1 3 ) k = 3 4 [ 1 − ( − 1 3 k + 1 ] 3 4 [ 1 − ( − 1 3 k ) ] + ( − 1 3 ) k = 3 4 [ 1 − ( − 1 3 ) k + 1 ] 3 − 3 ( − 1 3 ) k + ( − 1 3 ) k = 3 ∗ [ 1 − ( − 1 3 ) k ∗ ( − 1 3 ) ] 3 3 − 3 ( − 1 3 ) k + ( − 1 3 ) k = 3 − 3 ( − 1 3 ) k ∗ ( − 1 3 ) ] / : ( − 1 3 ) k − 3 − 3 + 4 = − 3 ∗ ( − 1 3 ) 0 = 0 {\displaystyle {\begin{aligned}&\underbrace {{\frac {1}{3}}+{\frac {1}{9}}+\cdots +({\frac {-1}{3}})^{k-1}} _{={\frac {3}{4}}[1-({\frac {-1}{3}}^{k}]}+({\frac {-1}{3}})^{k}={\frac {3}{4}}[1-({\frac {-1}{3}}^{k+1}]\\&{\frac {3}{4}}[1-({\frac {-1}{3}}^{k})]+({\frac {-1}{3}})^{k}={\frac {3}{4}}[1-({\frac {-1}{3}})^{k+1}]\\&3-3({\frac {-1}{3}})^{k}+({\frac {-1}{3}})^{k}=3*[1-({\frac {-1}{3}})^{k}*({\frac {-1}{3}})]3\\&3-3({\frac {-1}{3}})^{k}+({\frac {-1}{3}})^{k}=3-3({\frac {-1}{3}})^{k}*({\frac {-1}{3}})]/:({\frac {-1}{3}})^{k}-3\\&-3+4=-3*({\frac {-1}{3}})\\&0=0\\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.