4 1 ∗ 3 − 8 3 ∗ 5 + 12 5 ∗ 7 − 16 7 ∗ 9 + ⋯ + ( − 1 ) n 2 − 1 ∗ 2 n ( n − 1 ) ( n + 1 ) = 1 + ( − 1 ) n 2 + 1 n + 1 {\displaystyle {\frac {4}{1*3}}-{\frac {8}{3*5}}+{\frac {12}{5*7}}-{\frac {16}{7*9}}+\cdots +{\frac {(-1)^{{\frac {n}{2}}-1}*2n}{(n-1)(n+1)}}=1+{\frac {(-1)^{{\frac {n}{2}}+1}}{n+1}}}
L : ( ( − 1 ) n 2 − 1 ∗ 2 n ( n − 1 ) ( n + 1 ) = ( − 1 ) 1 ∗ 4 1 ∗ 3 = 4 1 ∗ 3 = 1 1 3 R : 1 + ( − 1 ) n 2 + 1 n + 1 = 1 + ( − 1 ) 2 3 = 1 1 3 1 1 3 = 1 1 3 {\displaystyle {\begin{aligned}&L:({\frac {(-1)^{{\frac {n}{2}}-1}*2n}{(n-1)(n+1)}}={\frac {(-1)^{1}*4}{1*3}}={\frac {4}{1*3}}=1{\frac {1}{3}}\\&R:1+{\frac {(-1)^{{\frac {n}{2}}+1}}{n+1}}=1+{\frac {(-1)^{2}}{3}}=1{\frac {1}{3}}\\&1{\frac {1}{3}}=1{\frac {1}{3}}\\\end{aligned}}}
4 1 ∗ 3 − 8 3 ∗ 5 + 12 5 ∗ 7 − 16 7 ∗ 9 + ⋯ + ( − 1 ) k 2 − 1 ∗ 2 k ( k − 1 ) ( k + 1 ) = 1 + ( − 1 ) k 2 + 1 k + 1 {\displaystyle {\frac {4}{1*3}}-{\frac {8}{3*5}}+{\frac {12}{5*7}}-{\frac {16}{7*9}}+\cdots +{\frac {(-1)^{{\frac {k}{2}}-1}*2k}{(k-1)(k+1)}}=1+{\frac {(-1)^{{\frac {k}{2}}+1}}{k+1}}}
4 1 ∗ 3 − 8 3 ∗ 5 + 12 5 ∗ 7 − 16 7 ∗ 9 + ⋯ + ( − 1 ) k 2 − 1 ∗ 2 k ( k − 1 ) ( k + 1 ) ⏟ = 1 + ( − 1 ) k 2 + 1 k + 1 + ( − 1 ) k + 2 2 − 1 ∗ 2 ( k + 2 ) ( k + 1 ) ( k + 3 ) = 1 + ( − 1 ) k + 2 2 + 1 k + 3 1 + ( − 1 ) k 2 + 1 k + 1 + ( − 1 ) k + 2 2 − 1 ∗ 2 ( k + 2 ) ( k + 1 ) ( k + 3 ) = 1 + ( − 1 ) k + 2 2 + 1 k + 3 ( k + 3 ) ( − 1 ) k + 1 2 + ( − 1 ) k 2 + 2 2 − 2 2 ∗ 2 ( k + 2 ) = ( k + 1 ) ( − 1 ) k 2 + 2 2 + 2 2 − ( k + 3 ) ( − 1 ) k 2 + ( − 1 ) k 2 ∗ 2 ( k + 2 ) = ( k + 1 ) ( − 1 ) k 2 : / ( − 1 ) k 2 − k − 3 + 2 k + 4 = ( k + 1 ) 0 = 0 {\displaystyle {\begin{aligned}&\underbrace {{\frac {4}{1*3}}-{\frac {8}{3*5}}+{\frac {12}{5*7}}-{\frac {16}{7*9}}+\cdots +{\frac {(-1)^{{\frac {k}{2}}-1}*2k}{(k-1)(k+1)}}} _{=1+{\frac {(-1)^{{\frac {k}{2}}+1}}{k+1}}}+{\frac {(-1)^{{\frac {k+2}{2}}-1}*2(k+2)}{(k+1)(k+3)}}=1+{\frac {(-1)^{{\frac {k+2}{2}}+1}}{k+3}}\\&1+{\frac {(-1)^{{\frac {k}{2}}+1}}{k+1}}+{\frac {(-1)^{{\frac {k+2}{2}}-1}*2(k+2)}{(k+1)(k+3)}}=1+{\frac {(-1)^{{\frac {k+2}{2}}+1}}{k+3}}\\&(k+3)(-1)^{\frac {k+1}{2}}+(-1)^{{\frac {k}{2}}+{\frac {2}{2}}-{\frac {2}{2}}}*2(k+2)=(k+1)(-1)^{{\frac {k}{2}}+{\frac {2}{2}}+{\frac {2}{2}}}\\&-(k+3)(-1)^{\frac {k}{2}}+(-1)^{\frac {k}{2}}*2(k+2)=(k+1)(-1)^{\frac {k}{2}}:/(-1)^{\frac {k}{2}}\\&-k-3+2k+4=(k+1)\\&0=0\\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.