2 1 ! − 3 2 ! + 4 3 ! − ⋯ + ( − 1 ) n − 1 ( n + 1 ) n ! = 1 + ( − 1 ) n + 1 n ! {\displaystyle {\frac {2}{1!}}-{\frac {3}{2!}}+{\frac {4}{3!}}-\cdots +{\frac {(-1)^{n-1}(n+1)}{n!}}=1+{\frac {(-1)^{n+1}}{n!}}}
L : ( − 1 ) n − 1 ( n + 1 ) n ! = 1 ∗ 2 1 ! = 2 1 = 2 R : 1 + ( − 1 ) n + 1 n ! = 1 + 1 1 ! = 1 + 1 1 = 2 2 = 2 {\displaystyle {\begin{aligned}&L:{\frac {(-1)^{n-1}(n+1)}{n!}}={\frac {1*2}{1!}}={\frac {2}{1}}=2\\&R:1+{\frac {(-1)^{n+1}}{n!}}=1+{\frac {1}{1!}}=1+{\frac {1}{1}}=2\\&2=2\\\end{aligned}}}
2 1 ! − 3 2 ! + 4 3 ! − ⋯ + ( − 1 ) k − 1 ( k + 1 ) k ! = 1 + ( − 1 ) k + 1 k ! {\displaystyle {\frac {2}{1!}}-{\frac {3}{2!}}+{\frac {4}{3!}}-\cdots +{\frac {(-1)^{k-1}(k+1)}{k!}}=1+{\frac {(-1)^{k+1}}{k!}}}
2 1 ! − 3 2 ! + 4 3 ! − ⋯ + ( − 1 ) k − 1 ( k + 1 ) k ! = ⏟ = 1 + ( − 1 ) k + 1 k ! + ( − 1 ) k ( k + 2 ) ( k + 1 ) ! = 1 + ( − 1 ) k + 2 ( k + 1 ) ! 1 + ( − 1 ) k + 1 k ! + ( − 1 ) k ( k + 2 ) ( k + 1 ) ! = 1 + ( − 1 ) k + 2 ( k + 1 ) ! ( k + 1 ) ( − 1 ) k + 1 + ( − 1 ) k ( k + 2 ) = ( − 1 ) k + 2 ( k + 1 ) ( − 1 ) k + 1 − ( − 1 ) k + 1 ( k + 2 ) = ( − 1 ) k + 1 k + 1 − k − 2 = 1 0 = 0 {\displaystyle {\begin{aligned}&\underbrace {{\frac {2}{1!}}-{\frac {3}{2!}}+{\frac {4}{3!}}-\cdots +{\frac {(-1)^{k-1}(k+1)}{k!}}=} _{=1+{\frac {(-1)^{k+1}}{k!}}}+{\frac {(-1)^{k}(k+2)}{(k+1)!}}=1+{\frac {(-1)^{k+2}}{(k+1)!}}\\&1+{\frac {(-1)^{k+1}}{k!}}+{\frac {(-1)^{k}(k+2)}{(k+1)!}}=1+{\frac {(-1)^{k+2}}{(k+1)!}}\\&(k+1)(-1)^{k+1}+(-1)^{k}(k+2)=(-1)^{k+2}\\&(k+1)(-1)^{k+1}-(-1)^{k+1}(k+2)=(-1)^{k+1}\\&k+1-k-2=1\\&0=0\\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.