1 2 ∗ 3 ∗ 4 + 2 3 ∗ 4 ∗ 5 + ⋯ + n ( n + 1 ) ( n + 2 ) ( n + 3 ) = n ( n + 1 ) 4 ( n + 2 ) ( n + 3 ) {\displaystyle {\frac {1}{2*3*4}}+{\frac {2}{3*4*5}}+\cdots +{\frac {n}{(n+1)(n+2)(n+3)}}={\frac {n(n+1)}{4(n+2)(n+3)}}}
L : n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 ( 2 ) ( 3 ) ( 4 ) = 1 24 R : n ( n + 1 ) 4 ( n + 2 ) ( n + 3 ) = 2 4 ∗ 3 ∗ 4 = 1 24 1 24 = 1 24 √ {\displaystyle {\begin{aligned}&L:{\frac {n}{(n+1)(n+2)(n+3)}}={\frac {1}{(2)(3)(4)}}={\frac {1}{24}}\\&R:{\frac {n(n+1)}{4(n+2)(n+3)}}={\frac {2}{4*3*4}}={\frac {1}{24}}\\&{\frac {1}{24}}={\frac {1}{24}}\surd \\\end{aligned}}}
1 2 ∗ 3 ∗ 4 + 2 3 ∗ 4 ∗ 5 + ⋯ + k ( k + 1 ) ( k + 2 ) ( k + 3 ) = k ( k + 1 ) 4 ( k + 2 ) ( k + 3 ) {\displaystyle {\frac {1}{2*3*4}}+{\frac {2}{3*4*5}}+\cdots +{\frac {k}{(k+1)(k+2)(k+3)}}={\frac {k(k+1)}{4(k+2)(k+3)}}}
1 2 ∗ 3 ∗ 4 + 2 3 ∗ 4 ∗ 5 + ⋯ + k ( k + 1 ) ( k + 2 ) ( k + 3 ) ⏟ = k ( k + 1 ) 4 ( k + 2 ) ( k + 3 ) + k + 1 ( k + 1 ) ( k + 2 ) ( k + 4 ) = ( k + 1 ) ( k + 2 ) 4 ( k + 3 ) ( k + 4 ) f r a c k ( k + 1 ) 4 ( k + 2 ) ( k + 3 ) + k + 1 ( k + 1 ) ( k + 2 ) ( k + 4 ) = ( k + 1 ) ( k + 2 ) 4 ( k + 3 ) ( k + 4 ) k ( k + 1 ) ( k + 4 ) ( k + 1 ) ∗ 4 = ( k + 1 ) ( k + 2 ) 2 k 2 + 4 k + 4 = ( k + 2 ) 2 ( k + 2 ) 2 = ( k + 2 ) 2 0 = 0 {\displaystyle {\begin{aligned}&\underbrace {{\frac {1}{2*3*4}}+{\frac {2}{3*4*5}}+\cdots +{\frac {k}{(k+1)(k+2)(k+3)}}} _{={\frac {k(k+1)}{4(k+2)(k+3)}}}+{\frac {k+1}{(k+1)(k+2)(k+4)}}={\frac {(k+1)(k+2)}{4(k+3)(k+4)}}\\&frac{k(k+1)}{4(k+2)(k+3)}+{\frac {k+1}{(k+1)(k+2)(k+4)}}={\frac {(k+1)(k+2)}{4(k+3)(k+4)}}\\&k(k+1)(k+4)(k+1)*4=(k+1)(k+2)^{2}\\&k^{2}+4k+4=(k+2)^{2}\\&(k+2)^{2}=(k+2)^{2}\\&0=0\\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.