1 ∗ 2 ∗ 3 ∗ 4 + 2 ∗ 3 ∗ 4 ∗ 5 + ⋯ + n ( n + 1 ) ( n + 2 ) ( n + 3 ) = n 5 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) {\displaystyle 1*2*3*4+2*3*4*5+\cdots +n(n+1)(n+2)(n+3)={\frac {n}{5}}{\color {red}(n+1)}(n+2)(n+3)(n+4)}
R : n ( n + 1 ) ( n + 2 ) ( n + 3 ) = 1 ∗ 2 ∗ 3 ∗ 4 = 24 L : n 5 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 5 = 24 24 = 24 √ {\displaystyle {\begin{aligned}&R:n(n+1)(n+2)(n+3)=1*2*3*4=24\\&L:{\frac {n}{5}}(n+1)(n+2)(n+3)(n+4)={\frac {1*2*3*4*5}{5}}=24\\&24=24\surd \\\end{aligned}}}
1 ∗ 2 ∗ 3 ∗ 4 + 2 ∗ 3 ∗ 4 ∗ 5 + ⋯ + k ( k + 1 ) ( k + 2 ) ( k + 3 ) = k 5 ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) {\displaystyle 1*2*3*4+2*3*4*5+\cdots +k(k+1)(k+2)(k+3)={\frac {k}{5}}(k+1)(k+2)(k+3)(k+4)}
1 ∗ 2 ∗ 3 ∗ 4 + 2 ∗ 3 ∗ 4 ∗ 5 + ⋯ + k ( k + 1 ) ( k + 2 ) ( k + 3 ) ⏟ = k 5 ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) + ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) = ( k + 1 ) 5 ( k + 2 ) ( k + 3 ) ( k + 4 ) ( k + 5 ) k 5 ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) + ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) = ( k + 1 ) 5 ( k + 2 ) ( k + 3 ) ( k + 4 ) ( k + 5 ) / ∗ 5 ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) k + 5 = k + 5 0 = 0 {\displaystyle {\begin{aligned}&\underbrace {1*2*3*4+2*3*4*5+\cdots +k(k+1)(k+2)(k+3)} _{={\frac {k}{5}}(k+1)(k+2)(k+3)(k+4)}+{\color {red}(k+1)(k+2)(k+3)(k+4)}={\frac {(k+1)}{5}}(k+2)(k+3)(k+4)(k+5)\\&{\frac {k}{5}}(k+1)(k+2)(k+3)(k+4)+(k+1)(k+2)(k+3)(k+4)={\frac {(k+1)}{5}}(k+2)(k+3)(k+4)(k+5)/*{\frac {5}{(k+1)(k+2)(k+3)(k+4)}}\\&k+5=k+5\\&0=0\\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.