| x − 3 x + 1 | ≥ 3 {\displaystyle {\begin{aligned}\left|{\frac {x-3}{x+1}}\right\vert \geq 3\end{aligned}}} x − 3 x + 1 ≥ 3 {\displaystyle {\frac {x-3}{x+1}}\geq 3} או X − 3 X + 1 ≤ − 3 {\displaystyle {\frac {X-3}{X+1}}\leq -3} כאשר x ≠ − 1 {\displaystyle x\neq -1}
X − 3 X + 1 ≤ − 3 X − 3 X + 1 + 3 ≤ 0 x − 3 + 3 x + 3 x + 1 ≤ 0 4 x x + 1 ≤ 0 / ∗ ( x + 1 ) 2 ( 4 x ) ( x + 1 ) ≤ 0 ( 4 x ) ( x + 1 ) = 0 x 1 = 0 ; x 2 = 1 ↓ − 1 < x ≤ 0 {\displaystyle {\begin{aligned}&{\frac {X-3}{X+1}}\leq -3\\&{\frac {X-3}{X+1}}+3\leq 0\\&{\frac {x-3+3x+3}{x+1}}\leq 0\\&{\frac {4x}{x+1}}\leq 0/*(x+1)^{2}\\&(4x)(x+1)\leq 0\\&(4x)(x+1)=0\\&x_{1}=0;x_{2}=1\\&\downarrow \\&-1<x\leq 0\end{aligned}}}
− 3 ≤ X ≤ 0 x ≠ − 1 {\displaystyle {\begin{aligned}-3\leq X\leq 0&x\neq -1\end{aligned}}}