| x 2 − 4 x + 2 | − 2 ≥ 0 x {\displaystyle \ |x^{2}-4x+2|-2\geq 0x} x 2 − 4 x + 2 ≥ 2 {\displaystyle \ x^{2}-4x+2\geq 2} או x 2 − 4 x + 2 ≤ − 2 {\displaystyle \ x^{2}-4x+2\leq -2}
x 2 − 4 x + 2 ≤ − 2 x 2 − 4 x + 4 ≤ 0 ( x − 2 ) 2 ≤ 0 ( x − 2 ) 2 = 0 x = 2 ↓ x = 2 {\displaystyle {\begin{aligned}&x^{2}-4x+2\leq -2\\&x^{2}-4x+4\leq 0\\&(x-2)^{2}\leq 0\\&(x-2)^{2}=0\\&x=2\\&\downarrow \\&x=2\\\end{aligned}}}
x ≤ 0 ; x = 2 ; x ≥ 4 {\displaystyle {\begin{aligned}x\leq 0;x=2;x\geq 4\end{aligned}}}