x 2 − 4 | x | + 3 ≥ 0 − 4 | x | ≥ − x 2 − 3 {\displaystyle {\begin{aligned}&x^{2}-4|x|+3\geq 0\\&-4|x|\geq -x^{2}-3\\\end{aligned}}} − 4 x ≥ − x 2 − 3 {\displaystyle -4x\geq -x^{2}-3} או − 4 x < x 2 + 3 {\displaystyle \ -4x<x^{2}+3}
− 4 x < x 2 + 3 x 2 + 3 + 4 x ≥ 0 ( x + 1 ) ( x + 3 ) ≥ 0 ( x + 1 ) ( x + 3 ) = 0 x 1 = − 1 : x 2 = − 3 ↓ x ≤ − 3 ; x ≥ − 1 {\displaystyle {\begin{aligned}&-4x<x^{2}+3\\&x^{2}+3+4x\geq 0\\&(x+1)(x+3)\geq 0\\&(x+1)(x+3)=0\\&x_{1}=-1:x_{2}=-3\\&\downarrow \\&x\leq -3;x\geq -1\\\end{aligned}}}
x ≤ − 3 ; − 1 < x < 1 ; x > 3 {\displaystyle {\begin{aligned}x\leq -3;-1<x<1;x>3\end{aligned}}}