| x 2 − 6 | < 5 x − 5 x < x 2 − 6 < 5 x {\displaystyle {\begin{aligned}&|x^{2}-6|<5x\\&-5x<x^{2}-6<5x\\\end{aligned}}}
x 2 − 6 < 5 x x 2 − 6 − 5 x < 0 ( x − 6 ) ( x + 1 ) < 0 ( x − 6 ) ( x + 1 ) = 0 x 1 = 6 ; x 2 = − 1 ↓ − 1 < x < 6 {\displaystyle {\begin{aligned}&x^{2}-6<5x\\&x^{2}-6-5x<0\\&(x-6)(x+1)<0\\&(x-6)(x+1)=0\\&x_{1}=6;x_{2}=-1\\&\downarrow \\&-1<x<6\\\end{aligned}}}
1 < x < 6 {\displaystyle {\begin{aligned}1<x<6\end{aligned}}}