| x + 2 | + | x | < 3 {\displaystyle \ |x+2|+|x|<3}
x = − 3 ( − 3 + 2 ) ( − 3 ) ( − ) ( − ) ↓ − ( x + 2 ) − ( x ) < 3 {\displaystyle {\begin{aligned}&x=-3\\&(-3+2)(-3)\\&(-)(-)\\&\downarrow \\&-(x+2)-(x)<3\\\end{aligned}}}
X = − 1 ( − 1 + 2 ) ( − 1 ) ( + ) ( − ) ↓ ( x + 2 ) − ( x ) < 3 {\displaystyle {\begin{aligned}&X=-1\\&(-1+2)(-1)\\&(+)(-)\\&\downarrow \\&(x+2)-(x)<3\\\end{aligned}}}
x = 1 ( 1 + 2 ) ( 1 ) ( + ) ( + ) ↓ − ( x + 2 ) + ( x ) < 3 {\displaystyle {\begin{aligned}&x=1\\&(1+2)(1)\\&(+)(+)\\&\downarrow \\&-(x+2)+(x)<3\\\end{aligned}}}
− ( x + 2 ) − ( x ) < 3 − x + 2 − x < 3 − 2 x + 2 < 3 x < − 2.5 {\displaystyle {\begin{aligned}&-(x+2)-(x)<3\\&-x+2-x<3\\&-2x+2<3\\&x<-2.5\\\end{aligned}}}
( x + 2 ) − ( x ) < 3 x + 2 − x < 3 2 < 3 x ∈ R {\displaystyle {\begin{aligned}&(x+2)-(x)<3\\&x+2-x<3\\&2<3\\&x\in \mathbb {R} \end{aligned}}}
− ( x + 2 ) + ( x ) < 3 − x + 2 + x < 3 2 x < 1 x = 0.5 {\displaystyle {\begin{aligned}&-(x+2)+(x)<3\\&-x+2+x<3\\&2x<1\\&x=0.5\end{aligned}}}