a 1 = 2 a n + 1 = a n + 2 n + 1 a n = n 2 + 1 {\displaystyle {\begin{aligned}&a_{1}=2\\&a_{n+1}=a_{n}+2n+1\\&a_{n}=n^{2}+1\\\end{aligned}}}
a n = n 2 + 1 = 1 2 + 1 = 2 a 1 = 2 2 = 2 √ {\displaystyle {\begin{aligned}&&a_{n}=n^{2}+1=1^{2}+1=2\\&a_{1}=2\\2=2\surd \\\end{aligned}}}
a k = k 2 + 1 {\displaystyle \ a_{k}=k^{2}+1}
a k + 1 = ( k + 1 ) 2 + 1 a k + 1 = k 2 + 2 k + 1 + 1 {\displaystyle {\begin{aligned}&a_{k+1}=(k+1)^{2}+1\\&a_{k+1}=k^{2}+2k+1+1\\\end{aligned}}}
a k + 1 = a k ⏟ k 2 + 1 + 2 k + 1 a k + 1 = k 2 + 1 + 2 k + 1 a k + 1 = k 2 + 1 + 2 k + 1 a k + 1 = k 2 + 2 k + 2 {\displaystyle {\begin{aligned}&a_{k+1}=\underbrace {ak} _{k^{2}+1}+2k+1\\&a_{k+1}=k^{2}+1+2k+1\\&a_{k+1}=k^{2}+1+2k+1\\&a_{k+1}=k^{2}+2k+2\\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.