1 + 9 + 9 2 + ⋯ + 9 2 n − 1 10 = Z {\displaystyle {\frac {1+9+9^{2}+\cdots +9^{2n-1}}{10}}=Z}
9 2 n − 1 10 = Z 9 2 − 1 10 → 1 + 9 10 = Z 1 = Z √ {\displaystyle {\begin{aligned}&{\frac {9^{2n-1}}{10}}=\mathbb {Z} \\&{\frac {9^{2-1}}{10}}\rightarrow {\frac {1+9}{10}}=\mathbb {Z} \\&1=\mathbb {Z} \surd \\\end{aligned}}}
1 + 9 + 9 2 + ⋯ + 9 2 k − 1 10 = Z {\displaystyle {\frac {1+9+9^{2}+\cdots +9^{2k-1}}{10}}=Z}
1 + 9 + 9 2 + ⋯ + 9 2 k − 1 10 ⏟ = Z + 9 2 k + 9 2 k + 1 10 = Z Z + 9 2 k + 9 2 k + 1 10 Z + 9 2 k + 9 2 k ∗ 9 10 9 2 k ∗ ( 9 + 1 ) 10 9 2 k ∗ 10 10 9 2 k = Z {\displaystyle {\begin{aligned}&\underbrace {\frac {1+9+9^{2}+\cdots +9^{2k-1}}{10}} _{=\mathbb {Z} }+{\frac {9^{2k}+9^{2k+1}}{10}}=\mathbb {Z} \\&\mathbb {Z} +{\frac {9^{2k}+9^{2k+1}}{10}}\\&\mathbb {Z} +{\frac {9^{2k}+9^{2k}*9}{10}}\\&{\frac {9^{2k}*(9+1)}{10}}\\&{\frac {9^{2k}*10}{10}}\\&9^{2}k=\mathbb {Z} \\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.