1 + 3 + 3 2 + ⋯ + 3 3 n − 1 13 = Z {\displaystyle {\frac {1+3+3^{2}+\cdots +3^{3n-1}}{13}}=Z}
3 3 n − 1 = Z 3 3 ∗ 1 − 1 = 3 2 ↓ 1 + 3 + 3 2 13 = 1 + 3 + 9 13 = 13 13 13 13 = Z √ {\displaystyle {\begin{aligned}&3^{3n-1}=Z\\&3^{3*1-1}=3^{2}\\&\downarrow \\&{\frac {1+3+3^{2}}{13}}={\frac {1+3+9}{13}}={\frac {13}{13}}\\&{\frac {13}{13}}=Z\surd \\\end{aligned}}}
1 + 3 + 3 2 + ⋯ + 3 3 k − 1 13 = Z {\displaystyle {\frac {1+3+3^{2}+\cdots +3^{3k-1}}{13}}=Z}
1 0 + 3 1 + 3 2 + ⋯ + 3 3 K − 1 + 3 3 k + 3 3 k + 1 + 3 3 k + 2 13 = Z 1 0 + 3 1 + 3 2 + ⋯ + 3 3 K − 1 13 ⏟ = Z + 3 3 k + 3 3 k + 1 + 3 3 k + 2 13 = Z Z + 3 3 k + 3 3 k + 1 + 3 3 k + 2 13 = Z Z = Z √ 3 3 k + 3 3 k + 1 + 3 3 k + 2 13 = Z 3 3 k ( 1 + 3 1 + 3 2 13 = Z 3 3 k ( 13 ) 13 = Z √ 3 3 k = Z {\displaystyle {\begin{aligned}&{\frac {1^{0}+3^{1}+3^{2}+\cdots +3^{3K-1}+{\color {red}3^{3k}+3^{3k+1}}+3^{3k+2}}{13}}=Z\\&\underbrace {\frac {1^{0}+3^{1}+3^{2}+\cdots +3^{3K-1}}{13}} _{=Z}+{\frac {3^{3k}+3^{3k+1}+3^{3k+2}}{13}}=Z\\&Z+{\frac {3^{3k}+3^{3k+1}+3^{3k+2}}{13}}=Z\\&Z=Z\surd &{\frac {3^{3k}+3^{3k+1}+3^{3k+2}}{13}}=Z\\&{\frac {3^{3k}(1+3^{1}+3^{2}}{13}}=Z\\&{\frac {3^{3k}(13)}{13}}=Z\\&\surd 3^{3k}=Z\\\end{aligned}}}
3 3 k {\displaystyle 3^{3k}} שלם עבור K טבעי.הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.