3 ∗ 5 2 n + 19 ∗ 3 n 66 = Z {\displaystyle {\frac {3*5{2n}+19*3^{n}}{66}}=\mathbb {Z} }
3 ∗ 5 2 ∗ 1 + 19 ∗ 3 1 66 = Z 60 = Z {\displaystyle {\begin{aligned}&{\frac {3*5{2*1}+19*3^{1}}{66}}=\mathbb {Z} \\&60=\mathbb {Z} \\\end{aligned}}}
3 ∗ 5 2 k + 19 ∗ 3 k 66 = Z {\displaystyle {\frac {3*5{2k}+19*3^{k}}{66}}=\mathbb {Z} }
3 ∗ 5 2 k + 2 + 19 ∗ 3 k + 1 66 = Z 3 ∗ 5 2 k ∗ 5 2 + 19 ∗ 3 k ∗ 3 66 = Z 3 ∗ 5 2 k ∗ ( 22 + 3 ) + 19 ∗ 3 k ∗ 3 66 = Z 3 ( 3 ∗ 5 2 k + 19 ∗ 3 k ) 66 ⏟ = 3 ∗ Z + 3 ∗ 5 2 k ∗ 22 66 = Z 5 2 k = Z 0 = 0 {\displaystyle {\begin{aligned}&{\frac {3*5{2k+2}+19*3^{k+1}}{66}}=\mathbb {Z} \\&{\frac {3*5{2k}*5^{2}+19*3^{k}*3}{66}}=\mathbb {Z} \\&{\frac {3*5{2k}*(22+3)+19*3^{k}*3}{66}}=\mathbb {Z} \\&\underbrace {\frac {3(3*5^{2k}+19*3^{k})}{66}} _{=3*\mathbb {Z} }+{\frac {3*5^{2k}*22}{66}}=\mathbb {Z} \\&5^{2k}=\mathbb {Z} &0=0\\\end{aligned}}}
K מספר טבעי ושלם ולכן, בחזקה, נקבל מספר טבעי ושלם.
הביטוי 3 ∗ 5 2 n + 19 ∗ 3 n 66 = Z {\displaystyle {\frac {3*5{2n}+19*3^{n}}{66}}=\mathbb {Z} } נכון עבור כל n {\displaystyle \ n}