Z {\displaystyle \mathbb {Z} } - מספר שלם.
8 ∗ 7 n + 4 n + 2 24 = Z {\displaystyle {\frac {8*7^{n}+4^{n+2}}{24}}=\mathbb {Z} }
8 ∗ 7 n + 4 n + 2 24 = Z 8 ∗ 7 + 4 1 + 2 24 = Z 5 = Z √ {\displaystyle {\begin{aligned}&{\frac {8*7^{n}+4^{n+2}}{24}}=\mathbb {Z} \\&{\frac {8*7+4^{1+2}}{24}}=\mathbb {Z} \\&5=\mathbb {Z} \surd \\\end{aligned}}}
8 ∗ 7 k + 4 k + 2 24 = Z {\displaystyle {\frac {8*7^{k}+4^{k+2}}{24}}=\mathbb {Z} }
8 ∗ 7 k + 1 k + 4 k + 3 24 = Z 8 ∗ 7 k ∗ 7 + 4 k + 2 ∗ 4 24 = Z 8 ∗ 7 k ∗ ( 4 + 3 ) + 4 k + 2 ∗ 4 24 = Z 8 ∗ 7 k ∗ 4 + 4 k + 2 ∗ 4 24 + 8 ∗ 7 k ∗ 3 24 = Z 4 ( 8 ∗ 7 k + 4 k + 2 ) 24 + 7 k ∗ 24 24 = Z 4 ∗ Z + 7 k = Z 4 ∗ Z + Z = Z {\displaystyle {\begin{aligned}&{\frac {8*7^{k+1}k+4^{k+3}}{24}}=\mathbb {Z} \\&{\frac {8*7^{k}*7+4^{k+2}*4}{24}}=\mathbb {Z} \\&{\frac {8*7^{k}*(4+3)+4^{k+2}*4}{24}}=\mathbb {Z} \\&{\frac {8*7^{k}*4+4^{k+2}*4}{24}}+{\frac {8*7^{k}*3}{24}}=\mathbb {Z} \\&{\frac {4(8*7^{k}+4^{k+2})}{24}}+{\frac {7^{k}*24}{24}}=\mathbb {Z} \\&4*\mathbb {Z} +7^{k}=\mathbb {Z} \\&4*\mathbb {Z} +\mathbb {Z} =\mathbb {Z} \\\end{aligned}}}
הטענה נכונה עבור כל n טבעי, ע"פ שלושת שלבי האינדוקציה.