מתמטיקה תיכונית/חשבון דיפרנציאלי/הגדרת הפונקציה: הבדלים בין גרסאות בדף

קפיצה לניווט קפיצה לחיפוש
משני
(משני)
{{עריכה|סיבה=יש לפצל את הנושאים, תרגול, הרחבת הגדרת הפונקציה}}
==מהי פונקציה?==
פונקציה המבטא את היחס שיש בין <math>\ x </math> לבין <math>\ y </math>. למשל: <math>\ y = x+2 </math> הינה פונקציה שהקשר בין X ל-Y הוא, ש-y גדול מ-x ב-2. <br />
[[מתמטיקה תיכונית/חשבון דיפרנציאלי/הצגה גרפית של פונקציה|הצגה גרפית של פונקציה]] - כל פונקציה ניתן לתאר על מערכת צירים.
 
==מקור תמונה==
{{להשלים}}
==מתי אין פונקציה?==
[[מתמטיקה תיכונית/חשבון דיפרנציאלי/הגדרת הפונקציה|על פי הגדרת הפונקציה]] , פונקציה אשר ל-X שלה (תחום) יש שתי הגדרות שונות (שתי נקודות Y), היא אינה פונקציה.
* הצבת ערכי B בפונקציה נותן : <math>10=2+2</math> כיוון שהמשוואה היא פסוק שקר, B אינה נמצאת על הפונקציה - B אינה מקיימת את משוואת הפונקציה.
* Yc = 2. C נמצאת על הפונקציה, לכן הצבה בפונקציה תגלה לנו את ערכי X. <math>2=X+2</math>. לאחר [[מתמטיקה תיכונית/אלגברה/משוואות ממעלה ראשונה עם פרמטרים|סידור אגפים]], אנו מגלים כי Xc=0.
 
==חקירת פונקציה==
כאשר אנו רוצים לאייר פונקציה עלינו לחקור אותה. במהלך החקירה אנו נבדוק את המאפיינים הבאים :
# תחום הגדרה -
# תחומי עליה ירידה
# נקודות חיתוך עם הצירים
#נקודות קיצון ופיתול.
#אסיפטוטות
 
==סוגים של פונקציות==

תפריט ניווט